FACULTY OF LIFE SCIENCES

Syllabus for

Master of Science (Zoology)
 (Under Credit Based Evaluation System) (SEMESTER: I-IV) Session: 2022-23

Kanya Maha Vidyalaya, Jalandhar (Autonomous) The Heritage Institution

Master of Science (Zoology) (Session 2022-23) Program Specific Outcomes

PSO1 Used the evidences of comparative biology to explain how the theory of evolution offers the only scientific explanation for the unity and diversity of life on earth. They are able to use specific examples to explicate how descent with modification has shaped animal morphology, physiology, life history, and behavior.
PSO2 Explicate the ecological interconnectedness of life on earth by tracing energy and nutrient flows through the environment. They are able to relate the physical features of the environment to the structure of populations, communities, and ecosystems.
PSO3 Subjects such as invasive or endangered species, embryonic development in mammals and ageing in social insects. Lead to advances in medicine to prevent disease amongst both animals and human beings.
PSO4 Develop knowledge and understood of living organisms at several levels of Zoological and Biological organization from the molecular, through to cells and whole organisms and ecosystems all organs of evolutionary perspectives.
PSO5 Understand how the chemistry and structure of the major biological macromolecules, including proteins and nucleic acids, determines their biological properties.
PSO6 Demonstrate knowledge to acquire, articulate, retain, and employ practical skills relevant to Fundamentals of computer, Molecular biology\&rDNAtechnology.

PSO7 Define event, outcome, trial, simple event, sample space and calculate the probability of events for more complex outcomes related to conditional, additive and multiplicative law of probability.
PSO8 Understand the concept of mathematical expectation and use it to find out the mean, variance, standard deviation, kurtosis etc. of different probability distributions like Binomial, Poisson and Normal etc.
PSO9 Use Correlation to identify the strength and direction of a linear relationship between two variables and using Regression to predict how much a dependent variable changes based on adjustments to an independent variable and also apply Karl Pearson Correlation coefficient and Spearman's Rank Correlation and Least Square technique for Regression lines.

Kanya Maha Vidyalaya, Jalandhar (Autonomous)
SCHEME AND CURRICULUM OF EXAMINATIONS OF TWO YEAR DEGREE PROGRAMME Master of Science (Zoology) Semester-I

Session-2022-23

IDE - Inter Disciplinary Elective Course

* Grade points of these courses will not be included in the SGPA/CGPA of semester.

Session 2022-23
 Master of Science Zoology (Semester-I)
 Course Title: Functional Organization of Animals- I (Theory)
 Course Code: MZOL-1481

COURSE OUTCOMES

After passing this course the student will be able to:
$>\mathrm{CO} 1$ Understand the physiological mechanisms.
$>\mathrm{CO} 2$ Familiarize with the physiology of digestive and respiratory system of chordates $\&$ non-chordates.
$>$ CO3 Understand the blood composition, types, groups and circulatory system.
$>\mathrm{CO} 4$ Understand the physiology of excretory system.

Session 2022-23
 Master of Science Zoology (Semester-I)
 Course Title: Functional Organization of Animals- I (Theory)
 Course Code: MZOL-1481

L-T-P: 4-0-0
Maximum marks: 100
Theory marks: 80
CA: 20

Instructions for the Paper Setter:

Eight questions of equal marks (16 marks each) are to be set, two in each of the four Sections (A- D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.

Unit -I

Nutrition and Digestion

Ingestion of soluble food and particulate food in relation to habitat and habits
Symbiotic nutrition
Mechanism of digestion and regulation of secretion in non-chordates and chordates
Unit - II

Transport and circulatory mechanisms

Intracellular transport in Protozoa
Circulation of external medium of transport within the body of sponges and cnidarians
Open and closed types of circulatory system
Chambered, tubular and ampullary hearts
Neurogenic and myogenic hearts
Evolution of Heart and Cardiovascular system

Unit-III

Respiratory System

Respiratory organs in aquatic animals and aquatic respiration
Respiratory organs and aerial mode of respiration
Distribution and brief chemistry of respiratory pigments and their function in nonchordates and chordates
Unit - IV

Excretion and Reproduction

Excretory structures and waste disposal in non-chordates, coelom, coelomic ducts, nephridia, antennal / green glands, malpighian tubules
Regulation of water salt balance
Pattern of reproduction in non-chordates and their larval forms
Evolution of the urinogenital system in chordates with special reference to the separation of the two systems

Suggested Reading Material:

- Barrington, E. U. W. (1967), Invertebrates Structure and Functions. Houghton Mifflin Co. Boston.
- Barth, R. H. and Broshears, R. E (1982), The Invertebrate world. Holt Saunder, Japan.
- Brusca, R. C. and Brusca, G. J. (2003), Invertebrates second edition. Sinauer Associates, Inc. Publishers, Sunderland, Massachusetts.
- Cooper, G. M. (2004), The Cell: A Molecular Approach IIIrd edition, ASM Press, Washington, D.C.
- Engemann, J. G. and Hegner, R. W. (1981), Invertebrate Zoology (3rd ed.) Macmillan, New York.
- Gardiner, M. S. (1972), The Biology of Invertebrates, McGraw Hill, New York.
- Hill, R. W., Wyse, G. K. and Anderson, N. (2004), Animal physiology. Sinauer Associate, INC. Pub. Saunderland, Massachusettes, USA.
- Hoar, W. S. (1984), General and Comparative Physiology. Prentice Hall of India Pvt. Limited, New Delhi, India.
- Karp, G.(2005), Cell and Molecular Biology; concepts and experiments (4th ed.),Hoboken, John Willy and Sons, New York.
- Meglitsch, P. A. and Schran, F. R. (1991), Invertebrate Zoology 3rd Ed. Oxford University Press, New York.
- Pechenik, A. Jan. (2000), Biology of the invertebrates, Fourth Edition, McGraw Hill Book Co. Singapore.
- Prosser, C.L. (1984), Comparative Animal Physiology. Satish Book Enterprise Books seller \& Publishers, Agra.
- Purves, W. K., Oriane, G. H., Space, H. C. and Salava, D. (2001), Life - The Science of Biology 6th ed., Sinauer Assoc. Inc., USA.
- Randall, D., Burggren, K.L. and French, K. (2002), Eckert Animal Physiology:Mechanisms and Adaptations. W.H. Freeman and Company, New York
- Ruppert, E. E. and Barnes, R. D. (2004), Invertebrate Zoology 7th ed. Saunders Publ., Philadelphia.
- Willmer, P. Stone, G. and Johnston, I (2000). Environmental Physiology of Animals, Blackwell Science.
- Withers, P.C. (1992), Comparative Animal Physiology Saunder College Publishing, New York.

Session 2022-23
Master of Science Zoology (Semester-I)
Course Title: Animal Ecology (Theory)
Course Code: MZOL-1482

COURSE OUTCOMES

After passing this course the student will be able to:
$>$ CO1 Demonstrate and Understand the ecological relationships between organisms and their environment.
$>\mathrm{CO} 2$ Explain and identify the role of the organism in energy transfers.
$>\mathrm{CO} 3$ Understand various types of adaptations and ecology of population
$>\mathrm{CO} 4$ Understand the applied aspect of ecology

Session 2022-23
 Master of Science Zoology (Semester-I)
 Course Title: Animal Ecology (Theory)
 Course Code: MZOL-1482

Examination Time: $\mathbf{3} \mathbf{h r s}$
Maximum marks: 100
L-T-P: 4-0-0
Theory marks: 80
CA: 20

Instructions for the Paper Setter:

Eight questions of equal marks (16 marks each) are to be set, two in each of the four Sections (A- D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.

Unit-I

Introduction and History of Ecology

Structure and Functions of some special types of ecosystems (Grasslands, forests, deserts, aquatic ecosystems and agroecosystem)
Abiotic factors
Temperature, Moisture, Light, fire, Malentite, Pollution
Unit - II

Biotic Factors

Analysis of Environment
Place in which to live
Community Structure
Ecological Niche, Food chains, Food webs, biomagnifications, succession / temporal changes
Interactions and Coactions
Intraspecific Interactions
Interspecific Interactions
Predation, Parasitism, Commensalism, Mutualism etc
Unit- III

Adaptations

Cave, deep sea, arboreal, aerial, and subterrestrial
Co-adaptations and adaptive resemblances (mimicry, warning colouration, seasonal polymorphism)

Population Ecology

Concept of Population
Biotic potential and carrying capacity, dispersal and distribution, population growth and its regulations
Methods of sampling
Life tables and longevity, Migration and Ecesis

Applied Ecology

Anthropogenic interferences
Bio monitoring of environment using animal species
Modeling and Use of remote sensing (GIS) in ecology (introduction)
Overview of sustainable development of ecosystems

Bio Geography

Zoo Geographical regions
Island ecology (endemicity)

Suggested Reading Material:

- Anderwartha, H.G. and Birch, L. C. (1970), The distribution and abundance of animals, University of Chicago Press, Chicago London.
- Beeby, A. (1992), Applying Ecology Chapman and Hall Madras.
- Begon, M., Harper J. L. and Townsend, C. R. (1995), Ecology - Individuals, populations and communities, Blackwell Science, Cambridge UK.
- Brewer, R. (1994), The science of Ecology, Saunders College of Publishing, New York.
- Chapman, J. L. and Resis, M. J. (1995), Ecology- Principles and applications, Cambridge University Press, Cambridge UK.
- Kaeighs, S. C. (1974), Ecology with special references to animal and Man, Prentice Hall Inc.
- Odum, E. P. (1983), Basic Ecology.
- Putmann, R. J. and Wratten, S. D. (1984), Principles of Ecology, Crown Helm, London.
- Salanki, J., Jeffery E. and Hughes G. M. (1994), Biological Monitoring ofthe Environment (A manual of Methods) CAB International, Wallingford UK.

Session 2022-23
Master of Science Zoology (Semester-I)
Course Title: Cell Biology (Theory)
Course Code: MZOL-1483

COURSE OUTCOMES

After passing this course the student will be able to:
$>$ CO1 Describe the ultra-structure and functions of cell organelles.
$>\mathrm{CO} 2$ Understand DNA replication, RNA and protein synthesis and come to know protein synthesis can be controlled at the level of transcription and translation.
$>\mathrm{CO} 3$ Understand cell signaling and cellular communication.
$>\mathrm{CO} 4$ Understand the types and applications of stem cells.

Session 2022-23
Master of Science Zoology (Semester-I) Course Title: Cell Biology (Theory)

Course Code: MZOL-1483

Examination Time: 3 hrs

L-T-P: 4-0-0

Maximum marks: 100
Theory marks: 80
CA: 20

Instructions for the Paper Setter:

Eight questions of equal marks (16 marks each) are to be set, two in each of the four Sections (A- D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.

Unit-I

Introduction

Cell - a unit of structure and function, cell theory
Prokaryotes and eukaryotes cells

Cytoskeleton

Actin filament, Myosin, Intermediate filament, microtubules
Structure of Cell Membrane
Chemical composition
Various Lipoprotein models including fluid mosaic model

Nucleus

The Nuclear Envelope and Traffic between the Nucleus and the Cytoplasm
Internal Organization of the Nucleus
The Nucleolus and rRNA Processing
Unit - II

Ribosomes

Prokaryotic and Eukaryotic ribosomes
Role of ribosomes in protein synthesis in prokaryotes and eukaryotes

Golgi complex

Structure and Function of: Cisternae, vacuoles and vesicles
Types of Vesicle Transport and their functions
Protein sorting and targeting
GERL concept

Endoplasmic Reticulum

Structure and Function of endoplasmic reticulum
Membrane synthesis in the ER
Mechanism ensuring destruction of misfolded protein
ER to Golgi vesicular transport

Unit -III

Mitochondria

Structure and Functions
Oxidative metabolism in the Mitochondrion
Role of Mitochondria in the formation of ATP
Electron-Transport complexes
Lysosomes
Lysosomal acid hydrolases
Endocytosis and Lysosome formation
Lipofuscin pigments
Peroxisomes
Functions of peroxisomes
Glyoxylatepathway
Peroxisome assembly
Unit - IV

Cell signaling

Signaling molecules and their receptors
Functions of cell surface receptors
Pathways of intracellular signal transduction
Signal transduction and the cytoskeleton
Cell Cycle
Various cell cycle check points
Cyclin and cyclin dependent kinases
Regulation of CDK- cyclin activity

Suggested Reading Material:

- Alberts, B. Bracy, P. Lewis, J. Raff, M. Roberts K and Watson, J. (eds) (1994). Molecular Biology of the Cell, Garland Publishing, New York.
- Avers, C. J. (1976). Cell Biology, Van Nostrand Reinhold, New York.
- Cooper, G. M. (2004). The cell, A Molecular Approach ASM press, Washington, D.C.
- Darnell, J. Lodish, H. and Baltimore, D. (2004). Molecular Cell Biology, 2nd edition, Freeman, New York.
- Derobertis, E. D. P. and Derobertis, E.M.F. (1987). Essentials of Cell and Molecular Biology. Hold Saunders - Philadelphia.
- Karp, G. (1984). Cell Biology 4th Edition, McGraw Hill, New York.
- Karp G. (1999). Cell and Molecular Biology. Concepts and Experiments, 2nd Editon John Wiley and Sons, Inc. New York, Brisbane, Toronto.
- Powar, C. B. (1990). Cell Biology. Himalaya Publishing House, Bombay.

Session 2022-23
 Master of Science Zoology (Semester-I)
 Course Title: Concepts of Biotechnology (Theory)

Course Code: MZOL-1484

COURSE OUTCOMES

After passing this course the student will be able to:
$>\mathrm{CO1}$ Describe cell culture and cell lines.
$>\mathrm{CO} 2$ Understand molecular markers and vectors used in biotechnology fields.
$>\mathrm{CO} 3$ Understand cloning and its applications.
$>\mathrm{CO} 4$ Understand the types and applications of stem cells and various techniques used in biotechnology.

Session 2022-23
Master of Science Zoology (Semester-I)
Course Title: Concepts of Biotechnology (Theory)
Course Code: MZOL-1484

Examination Time: 3 hrs

L-T-P: 4-0-0

Maximum marks: 100
Theory marks: $\mathbf{8 0}$
CA: 20

Instructions for the Paper Setter:

Eight questions of equal marks (16 marks each) are to be set, two in each of the four Sections (A- D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.
Unit - I

Brief introduction to Biotechnology

Cell culture and medium

Cell culture, Cell lines, protocol cryo-preserving cultured cells, cell viability and cell proliferation
Restriction Enzymes
DNA ligase, Klenow enzyme, T4 DNA polymerase, Polynucleotide kinase, Alkaline phosphatase
Stem Cells and Tissue engineering
Embryonic stem cell, adult stem cells, stem cell differentiation
Unit - II

Markers and Vectors

Molecular markers

RFLP, RAPD, SSLP markers
Vectors
Plasmid vectors, Bacteriophage vectors, Cosmids, M13,Phagemids, Fosmids, BACs andYACs

Cloning

Gene cloning and sequencing, cDNA cloning, Identification of Specific clone with a specific probe, Practical applications of gene cloning
Unit - III

Techniques

Principal, theory and application of Southern, Northern, Western Blotting
Polyacrylamide gel electrophoresis (PAGE)
Polymerase chain reaction (PCR)
DNA finger printing
DNA foot printing
In situ hybridization
Restriction fragment length polymorphism (RFLP)

Unit - IV

Hybridoma Technology

Immunization of animals: isolation of stimulated spleen cells
Myeloma cell lines used as fusion partners
Fusion methods
Monoclonal antibodies
Detection and applications
Vaccines
Conventional vaccines
Viral vaccines
Peptide vaccines
Genetically engineered vaccines
Production and applications of Cytokines

Suggested Reading Material:

- Spier, R.R. and Grifftths, J.B. (1994). Animal Cell Biotechnology, 6th Ed., Academic Press, London.
- Krogsgaard-larsen P. ,Liljefors T., Madsen U. and Larsen K, Liljefors T. Madsen U. (2016). Textbook of Drug Design and Discovery, 5 th Ed. Taylor and Francis Publications, Washington D.C.
- Gupta, P. K. (1996). Elements of Biotechnology, Rastogi and Co.,Meerut.
- Henry, R. J. (1997). Practical Applications of Plant Molecular Biology, Chapman and Hall.

Session 2022-23
 Master of Science Zoology (Semester-I)
 Course Title: Practical-I (Functional Organization of Animals-I) Course Code: MZOP-1485

COURSE OUTCOMES

After passing this course the student will be able to:
$>\mathrm{CO} 1$ Understand the comparative anatomy of gut through demonstration.
$>\mathrm{CO} 2$ Understand the comparative physiology of circulatory, excretory \& reproductive system through ICT based videos, presentations and charts.
$>\mathrm{CO} 3$ Understand anatomy of gut in relation to food and feeding habits of detritivores, carnivores, herbivores, omnivores and sanguivores and Different kinds of Heart and blood vascular system in animals
> CO IV Respiratory structures: Gills (Crustaceans, Bivalves, Cephalopods, and Fish); Book Lungs(Scorpion); Trachea and spiracles (Cockroach).

Session 2022-23
Master of Science Zoology (Semester-I)
Course Title: Practical-I (Functional Organization of Animals-I)
Course Code: MZOP-1485

Examination Time: $\mathbf{3} \mathbf{h r s}$

Maximum marks: 50
L-T-P: 0-0-3
Practical marks: 40
CA: 10

Instructions for the Practical Examiners:

Question paper is to set on the spot jointly by the Internal and External Examiners. Two copies of the same should be submitted for the record to COE Office, Kanya Maha Vidyalaya, Jalandhar.

Study of permanent slides

Mouth parts: honey bee, housefly, cockroach, butterfly, mosquito, and bug
Salivary glands
Blood smear of animals
Radula of Pila
Jaws of Leech

Using slides/charts/models/videos study of following

Anatomy of gut in relation to food and feeding habits of detritivores, carnivores, herbivores, omnivores and sanguivores
Different kinds of Heart and blood vascular system in animals
Respiratory structures: Gills (Crustaceans, Bivalves, Cephalopods, and Fish); Book Lungs
(Scorpion); Trachea and spiracles (Cockroach)
Nephridia in annelids (earthworm), green glands in crustaceans, Malpighian tubules in Cockroach Excretory system of frog, lizard, bird and rat
Histology of ovary, oviduct, uterus, testis and placenta in different groups of invertebrates and vertebrates
Reproductive organs in Hydra, Flatworm, Earthworm, Cockroach, Pila, Fish, Frog, Lizard, Bird and Rat
Note: The above mentioned practicals are in accordance with the guidelines of UGC. Practicals involving animal material will be conducted using models/charts/e- resources. Minor modifications in the curriculum are allowed subject to availability of resources.

Session 2022-23
 Master of Science Zoology (Semester-I) Course Title: Practical-II (Ecology and Cell Biology)
 Course Code: MZOP-1486

COURSE OUTCOMES

After passing this course the student will be able to:
$>\mathrm{CO} 1$ Perform the experiments to analyze the macromolecules in animals
$>\mathrm{CO} 2$ Describe the fine structure and functions of cell organelles.
$>\mathrm{CO} 3$ Perform a variety of cellular biology techniques.
$>\mathrm{CO} 4$ Analyse various physicochemical parameters in environmental matrices.

Session 2022-23
 Master of Science Zoology (Semester-I)
 Course Title: Practical-II (Ecology and Cell Biology)
 Course Code: MZOP-1486

Examination Time: $\mathbf{3} \mathbf{h r s}$
Maximum marks: 50
L-T-P: 0-0-3
Practical marks: 40
CA: 10

Instructions for the Practical Examiners:

Question paper is to set on the spot jointly by the Internal and External Examiners. Two copies of the same should be submitted for the record to COE Office, Kanya Maha Vidyalaya, Jalandhar.

Population estimations

Using Mark and Release method and to study the effect of migration on them (Using colored beads).

Estimation of population

Protozoans, Nematodes and Soil arthropods

Combined population studies using quadrates

Intra-population distribution and Poisson distribution, construction of life table and survivorship curves from given data.

Analysis of following

Normal and abnormal constituents in urine sample
RBC, WBC (TLC, DLC), platelet counts
Determination of ESR and PCV of human blood

Study of cell using permanent slides

Prokaryote cells: Lactobacillus, E. coli. Blue green algae
Eukaryote cells, Testicular material (for studies of spermatogenesis).

Microtomy

Introduction of the instrument - its use, care

Study of permanent slides of various tissues

(gut region, liver, lung, spleen kidney, pancreas, testis, ovary, tongue, skin etc.).
Study of electron micrographs of various cell organelles
Plasma membrane, Mitochondria, Golgi complex, Lysosomes, Endoplasmic reticulum (smooth and granular), Cilia, Centrioles, inclusions like glycogen and lipids etc

Note: The above mentioned practicals are in accordance with the guidelines of UGC. Practicals involving animal material will be conducted using models/charts/e- resources. Minor modifications in the curriculum are allowed subject to availability of resources.

Kanya Maha Vidyalaya, Jalandhar (Autonomous)

SCHEME AND CURRICULUM OF EXAMINATIONS OF TWO YEAR DEGREE PROGRAMME
Master of Science (Zoology) Semester-II
Session-2022-23

Masters of Sciences (Zoology)
Semester-II

Session 2022-23
Master of Science Zoology (Semester-II)
Course Title: Functional Organization of Animals -II (Theory) Course Code: MZOL-2481

COURSEOUTCOMES

After passing this course the student will be able to:

- CO1 Describe the specializations and evolution of skin and muscles.
$>\mathrm{CO} 2$ Describe the physiology of nervous system of human beings.
$>\mathrm{CO} 3$ Understand the physiology of muscles and endocrine stm
$>\mathrm{CO} 4$ Understand the physiology of sense organs.

Session 2022-23
 Master of Science Zoology (Semester-II)
 Course Title: Functional Organization of Animals -II (Theory)
 Course Code: MZOL-2481

Examination Time: 3 hrs

Maximum marks: 100
L-T-P: 4-0-0
Theory marks: 80
CA: 20

Instructions for the Paper Setter:

Eight questions of equal marks (16 marks each) are to be set, two in each of the four Sections (A- D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.

Unit - I

Integumentary System

Embryonic origin
General features of the Integument Specializations of integument Evolution of Skin
Muscular System
Classification of Muscles, Structure of Skeletal Muscles and cardiac muscle, Tendons Muscle mechanics Muscle Function Basis of Muscles contraction,
Muscle Fiber, Muscle organs and fibers Bone-muscle lever systems

Unit-II

Skeletal System

Exo and Endo Skeleton in Invertebrates
Appendicular skeleton in vertebrates
Basic Components
Phylogeny of fishes and tetrapods
Evolution of the appendicular system
Form and Function
Swimming
Terrestrial locomotion
Unit - III

Integratory Systems

Chemical coordination of body functions through neuro-secretion in non-chordates
Physiology of nerve net and giant fibre system
Evolution of functional anatomy of brain
Endocrine System
Endocrine organs

Chemical coordination of body functions through hormones and neuro-secretions

Unit-IV

Sensory System

General sensory organs Free sensory receptors
Encapsulated sensory receptors
Associated sensory receptors
Mechanisms of perceiving stimuli
Special sensory organs (Mechano, Radiation, Chemo. and Electroreceptors)
Additional special sensory organ

Suggested Reading Material:

- Barrington, E. U. W. (1967), Invertebrates Structure and Functions. Houghton Mifflin Co. Boston.
- Barth, R. H. and Broshears, R. E (1982), The Invertebrate World. Holt Saunder, Japan.
- Brusca, R. C. and Brusca, G. J. (2003), Invertebrates Second Edition. Sinauer Associates, Inc. Publishers, Sunderland, Massachusetts.
- Prosser, C.L. (1984), Comparative Animal Physiology. Satish Book Enterprise Books Seller \& Publishers, Agra.
- Purves, W. K., Oriane, G. H., Space, H. C. and Salava, D. (2001), Life - The Science of Biology 6th ed., Sinauer Assoc. Inc., USA.
- Randall, D., Burggren, K.L. and French, K. (2002), Eckert Animal Physiology: Mechanisms and Adaptations. W.H. Freeman and Company, New York.
- Ruppert, E. E. and Barnes, R. D. (2004), Invertebrate Zoology 7th ed. Saunders Publ., Philadelphia.
- Willmer, P., Stone, G. and Johnston, I (2000). Environmental Physiology of Animals, Blackwell Science.
- Withers, P.C. (1992), Comparative Animal Physiology. Saunder College Publishing New York.

Session 2022-23

Master of Science Zoology (Semester-II)
 Course Code: Applied Zoology-I (Theory)
 Course Code: MZOL-2482

COURSE OUTCOMES

After passing this course the student will be able to:
$>\mathrm{CO} 1$ understand the methods of bee keeping, diseases of honeybee and various bee products.
$>\mathrm{CO} 2$ Know the culture and harvesting methods of Lac and mulberry silkworm.
$>$ CO3 Understand the various methods of prawn farming. The students will also know about the spoilage, processing and preservation of prawns.
$>$ CO4 Understand the artificial pearl formation and economics of Vermiculture.

Session 2022-23

Master of Science Zoology (Semester-II)
Course Code: Applied Zoology-I (Theory)
Course Code: MZOL-2482

Examination Time: 3 hrs

Maximum marks: 100
L-T-P: 4-0-0
Theory marks: 80
CA: 20

Instructions for the Paper Setter:

Eight questions of equal marks (16 marks each) are to be set, two in each of the four Sections (A- D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.
Unit - I

Apiculture

History and Introduction Honey bee and kinds
Social organization of colony and nests Life Cycle
Relation between honeybees and plants Flora for Apiculture
Honey composition, quality and importance
Bee keeping, selection, methods, precautions Products of bee keeping
Bee enemies and diseases
Unit - II

Lac culture

Introduction

Lac insect species, Life cycle and Host plants Lac composition, properties \& importance Cultivation and harvesting of Lac
Enemies of Lac insect and host plants Lac industry in India

Sericulture

Indian sericulture industry (distribution and prospects) Silk moth species and their Life Cycle Silk composition, kinds and uses Mulberry cultivation
Rearing of silkworm
Treatment and disposal of cocoons Silk reeling, twisting and weaving Diseases \& pests of silkworm
Unit - III

Prawn Culture

Introduction to prawns Prawn: species
Fresh water prawn farming and Marine Prawn farming
Methods of Prawn farming
Spoilage and its prevention
Processing and preservation of prawns
Future of prawn culture
Unit - IV

Pearl Culture

Historical background
Pearl oyster -species
Pearl formation, composition, quality and commercial value
Artificial Culturing of Pearls
Synthetic pearls types and their manufacturing
Methods of harvesting
Problems of pearl industry

Vermiculture

Species of worms
Conditions for efficient Vermiculture (domestic and commercial level)
Economics of Vermiculture

Suggested Reading Material:

- Bhamrah, H. S. \&Juneja, K. (2001), An Introduction to Mollusca. Anmol Publications Pvt,. Ltd. New Delhi.
- Bhatnagar, R. K. and Palta, R. K. (2003), Earthworm ; Vermiculture and Vermicomposting, Kalyani Publishers India.
- Carter, G. A. (2004) Beekeeping, Biotech Books, New Delhi.
- Fenermore, P. G. and Prakash, A. (1992), Applied Entomology, Wiley Eastern Ltd. New Delhi
- Ghorai, N. (1995), Lac Culture in India. International Books and Periodicals, New Delhi.
- Jhingran, V. G. (1991) Fish and Fisheries of India, Hindustan Publishing Company India.
- Kumar, A. and Nigam, P. M. (1989), Economic and Applied Entomology EMKAY Publishing Co. New Delhi.
- Mishra, R. C. (1995), Honey Bees \& their Management in India. ICAR, New Delhi.
- Mustafa, S. (1990) Applied and Industrial Zoology. Associated Publishing Company, New Delhi.
- Shukla, G. S. \&Upadhaya, V. B. (1991-92), Economic Zoology, Rastogi Publications, Meerut.
- Sathe, T. V. and Jadhav, A. D. (2001) Sericulture and Pest Management, Daya Publishing House, New Delhi.
- Shimizu, M. (1972) Handbook of Silkworm Rearing (Agricultural Techniques Manual- Fuji Publishing Co. Ltd, Tokyo, Japan.
- Singh, S. (1962), Bee Keeping in India, I. C. A. R. Publications, New Delhi.
- Sobti, R. C. (1992), Medical Zoology, Nagin Chand \& Co. Jalandhar.
- Srivastava, P. A. (1977), Economic Zoology, Commercial Publication Bureau, Kanpur.
- Venkatanarasaiah, P. (1992), Sericulture in India, Ashish Publishing House, New Delhi.

Session 2022-23

Master of Science Zoology (Semester-II)
Course Title: Evolution
Course Code: MZOL-2483

COURSE OUTCOMES

After passing this course the student will be able to:
$>\mathrm{CO} 1$ Understand that many of the organisms that inhabit the Earth today are different from those that inhabited it in the past.
$>\mathrm{CO} 2$ Understand that the four propositions underlying Darwin's theory of evolution through natural selection are:
(1) More individuals are produced than can survive
(2) There is therefore, a struggle for existence
(3) Individuals within a species show variation
(4) Offspring tend to inherit their parental characters
(5)
> CO 3 Explain adaptation, providing examples from several different fields of biology.
$>\mathrm{CO} 4$ Explain how the molecular record provides evidence for evolution.

Session 2022-23
 Master of Science Zoology (Semester-II)
 Course Title: Evolution
 Course Code: MZOL-2483

Examination Time: $\mathbf{3} \mathbf{~ h r s}$
L-T-P: 4-0-0

Maximum marks: 100
Theory marks: 80
CA: 20

Instructions for the Paper Setter:

Eight questions of equal marks (16 marks each) are to be set, two in each of the four Sections (A-D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.

> Unit - I

Origin of Life

Origin of Micro molecules
Origin of Macro molecules
Origin of Viruses
Origin of Prokaryotes
Origin of Unicellular eukaryotes and multicellularity
Organic Evolution
Theories (Lemarkism and Darwinism)
Evidences
Separation of kingdoms
Unit -II

Variations

Types of variations
Causes of variations
Mutation rates and directions
Natural Selection
Types of selection
Selection forces
Experimental demonstration of Natural selection
Industrial melanism and polymorphism
Sexual selection
Selection and non adaptive characters

> Unit -IIII

Speciation

Isolation and its types
Gradual and abrupt
Origin of higher categories

Distribution of Species

Island, Ocean and Continental distribution
Theories of continental drift

Extinction

Kinds of extinction and causes of extinction
Major extinctions

Unit-IV

Quantative and Molecular Aspects of Evolution

Hardy- Weinberg law
Genetic drift
Selection pressure
Mutation pressure
Migration
Meiotic drive
Brief account of
Evolution of genome in viruses, prokaryotes and eukaryotes
Evolution of sexual reproduction
Molecular clocks
Evolution of Horse, Elephant, Man (in brief)
Future Course of Evolution

Suggested Reading Material:

- Avers, C. J.(1989). Evolution Process and Pattern in Evolution Oxford University, Press, New York, Oxfor.
- Ayala, F. J. and Valentine J. W. (1979). Evolving the theory and Process of Organic Evolution, Benjamin Cumming.
- Brookfield, A. P. (1986). Modern aspects of Evolution. Hutchinson London, Melbourne.
- Gallow, P. (1983). Evolutionary principles. Chapman and Hall.
- Freeman, S. and Herron, Jon C. (2007). Evolutionary analysis Pearson Prentice Hall, New Jersey.
- Futuyma, D. J. (1998), Evolutionary Biology, Sinauer Assoc. Inc. Pub. USA.
- Meglitsch, P. A. (1991), Invertebrate Zoology (3rd edition), Oxford University Press.
- Minkoff, E. C. (1983), Evolutionary Biology, Addison Wesley Pub. Co., London.
- Wen-Hsiung Li (1997), Molecular Evolution, Sinauer associates Inc.Pub. USA.

Session 2022-23
 Master of Science Zoology (Semester-II)
 Course Title: Biostatistics
 Course Code: MZOL-2334

COURSE OUTCOMES

After the Successful Completion of the subject students will be able to
CO 1: Know how to collect, analyze and interpret data and use this data to find out different measures of central tendency, dispersion, skewness, kurtosis and moments. They able to define event, outcome, trial, simple event, sample space and calculate the probability of events for more complex outcomes related to conditional, additive and multiplicative law of probability.

CO 2: Able to use and stimulate random variable, distribution function, probability mass function and probability density function using calculus to answer the quantitative questions about the outcome of probabilistic systems. And also understand the concept of mathematical expectation and use it to find out the mean, variance, standard deviation, kurtosis etc. of different probability distributions like Binomial, Poisson and Normal etc.

CO 3: Use Correlation to identify the strength and direction of a linear relationship between two variables and using Regression to predict how much a dependent variable changes based on adjustments to an independent variable and also apply Karl Pearson Correlation coefficient and Spearman's Rank Correlation and Least Square technique for Regression lines.

CO 4: Understand how to develop Null and Alternative Hypothesis and examine the process of Hypothesis testing with reference to one or two tailed test at a given level of significance. Also manage to solve problems using t, Z and Chi-Square test and will be able to describe the use of ANOVA for one way and two way classified data with one observation per cell.

Session 2022-23
 Master of Science Zoology (Semester-II)
 Course Title: Biostatistics
 Course Code: MZOL-2334

Examination Time: 3 hrs

Maximum marks: 50
L-T-P: 4-0-0
Theory marks: 40
CA: 10

Instructions for the Paper Setter:

Eight questions of equal marks (8 marks each) are to be set, two in each of the four Sections (A-D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.
The students can use only Non Programmable \& Non Storage Type Calculator and statistical tables.

UNIT-I

Statistical Method: Collection of data. Frequency distribution and its graphical representation. Measures of central tendency, dispersion, moments, skewness and kurtosis.

Probability: Random experiments, sample space, events. Mathematical definition of probability of an event. Use of permutations and combinations in calculations of probability, Conditional probability, Additive and multiplication law of probability.

UNIT-II

Random variables and its pmf, pdf, cdf, mathematical expectation and variances, Distribution of binomial, Poisson and normal variables and (without derivation)

UNIT-III

Correlation and Regression: Relationship between variables, covariance, Karl-Pearson's correlation coefficient, Spearman's rank correlation coefficient, interpretation of correlation coefficients, Least square technique for regression lines (without proof), regression coefficients, relationship between correlation analysis and regression analysis.

UNIT-IV

Hypothesis Testing: Sample statistics and parameters, population null hypothesis, level of significance. Definitions of Chi-square test, , Application of X2-test as a goodness of fit and association of attributes, t-test as a test of single and difference of means and F-test as a test of equality of population variances in testing of hypothesis.

Analysis of Variance: Analysis of variance for one-way classified data.

Suggested reading material:

1. P.N. Arora, P.K. Malhan, Biostatistics, Himalaya Publishing House, Mumbai, Reprint 2013.
2. S.C. Gupta, V.K. Kapoor, Fundamental of Mathematical Statistics, Sultan Chand \& Sons, Twelth Edition, 2020
3. E. Batschelet, Introduction to Mathematics for Life Scientists, Springer Publisher, Third Edition, 1979

Session 2022-23
 Master of Science Zoology (Semester-II)
 Course Title: PRACTICAL -III (Functional Organizations of Animals-II) Course Code: MZOP-2486

COURSE OUTCOMES

After passing this course the student will be able to:
$>$ CO1 Understand the comparative anatomy through demonstration.
$>\mathrm{CO} 2$ Understand the comparative physiology of sense organs, muscles, endocrine system through ICT based videos, presentations and charts.
> CO 3 Understand Appendicular skeleton.
> CO4 Understand comparative anatomy of nervous system in Earthworm, Cockroach, Pila, Sepia, Fishes, Birdand Mammal.

Examination Time: 3 hrs

L-T-P: 0-0-3

Maximum marks: 50
Practical marks: $\mathbf{4 0}$
CA: 10

Instructions for the Practical Examiners:

Question paper is to set on the spot jointly by the Internal and External Examiners. Two copies of the same should be submitted for the record to COE Office, Kanya Maha Vidyalaya, Jalandhar.

1. Study of permanent slides

Skin of fish, frog, lizard, bird and mammal
Setae of earthworm
Spicules of Sponges and Herdmania
Internal ear of fish
Tentorium of grasshopper
Muscle fibers, cartilage and bone
Endocrine glands of vertebrates
2. Appendicular skeleton
3. Study the following with the help of charts/models/videos/permanent slides

Appendages of Prawn
Wing venation, coupling and types of wings of insects
Comparative anatomy of nervous system in Earthworm, Cockroach, Pila, Sepia, Fishes, Bird and Mammal
Eye muscles of fish/mammal
Modification of antennae of arthropods

Note: The above mentioned practicals are in accordance with the guidelines of UGC. Practicals involving animal material will be conducted using models/charts/e-resources. Minor modifications in the curriculum are allowed subject to availability of resources.

Session 2022-23
 Master of Science Zoology (Semester-II)
 Course Title: PRACTICAL -IV (Evolution and Applied Zoology-I)
 Course Code: MZOP-2487

COURSE OUTCOMES

After passing this course the student will be able to:
$>$ CO1 Know the Animals of evolutionary importance, fossils, analogous and homologous organs, Mimicry and Colouration.
$>\mathrm{CO} 2$ Acquaint with the applied aspects of Zoology i.e. sericulture, lac culture, apiculture, dairy farming, poultry etc.
$>$ CO3 Understand the propositions underlying theories of evolution through demonstrations.
(1) More individuals are produced than can survive;
(2) There is therefore, a struggle for existence
(3) Individuals within a species show variation
(4) Offspring tend to inherit their parental characters
> CO 4 Prepare of Phylogenetic tree using some Priory weight characters with the help of8 10 animals from various categories.

Session 2022-23
 Master of Science Zoology (Semester-II) Course Title: PRACTICAL -IV (Evolution and Applied Zoology-I) Course Code: MZOP-2487

L-T-P: 0-0-3

Maximum marks: 50
Practical marks: 40
CA: 10

Instructions for the Practical Examiners:

Question paper is to set on the spot jointly by the Internal and External Examiners. Two copies of the same should be submitted for the record to COE Office, Kanya Maha Vidyalaya, Jalandhar.

1. Calculations for regression, correlation and variance of gene frequency and genetic equilibrium (taking pea pods).
2. Examination of the principle of natural selection as a process related to evolution in a population (using coloured marbles /beads).
3. Comparison of skeletons for listing evolutionary trends.
4. Comparison of molluscan shells to depict polyphyletic origin.
5. Comparison of homologous and analogous structures (e.g. insect antenna, legs, limbs of vertebrate etc.).
6. Demonstration of kinds of mimicry in various groups of animals.
7. Mapping of geographic distribution of some birds, insects, fish etc.
8. Study of various evolutionary phenomenon using slides / photographs.
9. Study of fossils.
10. Preparation of Phylogenetic tree using some Priory weight characters with the help of $8-10$ animals from various categories.
11. Visit to apiary/vermicomposting unit/ sericulture unit/ Prawn Farm and preparation of report.
Note: The above mentioned practicals are in accordance with the guidelines of UGC. Practicals involving animal material will be conducted using models/charts/e-resources. Minor modifications in the curriculum are allowed subject to availability of resources.

Session 2022-23

Master of Science Zoology (Semester-II)
Course Title: Seminar
Course Code: MZOS-2485

COURSE OUTCOMES

After passing this course the student will be able to:
$>$ CO1 Express their innovative ideas \& creativity on any scientific phenomenon \& develop interest in research aptitude.
$>\mathrm{CO} 2$ Build up confidence for public speaking.
$>\mathrm{CO} 3$ Improve their presentation skills.
$>\mathrm{CO} 4$ Improve computer knowledge.

Session 2022-23

Master of Science Zoology (Semester-II)
 Course Title: Seminar
 Course Code: MZOS-2485

Examination Time: 1 hr

Maximum marks: 50
L-T-P: 0-0-2
Theory marks: 40
CA: 10

Instructions for the Paper Setters:

The students are required to present a seminar on a topic of relevance and importance from the subject Zoology. The seminar carries 40 marks for the seminar based paper at the end of the semester.

Kanya Maha Vidyalaya, Jalandhar (Autonomous)
SCHEME AND CURRICULUM OF EXAMINATIONS OF TWO-YEAR DEGREE PROGRAMME
(Under Credit Based Continuous Evaluation Grading System) (CBCEGS) Session 2022-23

Master of Science (Zoology) Semester-III												
Course Code	Course Name		Course Type	Hours Per Week	Credits	Total Credits	Marks				Examination time (in hours)	
							P	CA	Total			
$\begin{array}{\|c} \hline \text { MZOL- } \\ 3481 \\ \hline \end{array}$	Rese and M	ch Technique ethodology		C	4	4-0-0	4	80	-	20	100	3
$\begin{array}{\|c} \hline \text { MZOL- } \\ 3482 \\ \hline \end{array}$	$\begin{aligned} & \text { Develo } \\ & \text { I } \\ & \hline \end{aligned}$	pmental Biolo	C	4	4-0-0	4	80	-	20	100	3	
$\begin{gathered} \hline \text { MZOL- } \\ 3483 \\ \hline \end{gathered}$	Genera	al Biochemistry	C	4	4-0-0	4	80	-	20	100	3	
$\begin{gathered} \hline \text { MZOL- } \\ 3484 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Applier } \\ & \text { II(Vert } \\ & \hline \end{aligned}$	ied Zoologytebrates)	C	4	4-0-0	4	80	-	20	100	3	
	Practic (Resea Techn Applie	cal-V arch iques and \qquad	C	6	0-0-3	3	-	40	10	50	3	
$\begin{array}{\|c\|} \hline \text { MZOP- P } \\ 3486 \end{array}$	Practic (Devel Biology Bioche	al VI opmental y and mistry)	C	6	0-0-3	3	-	40	10	50	3	
Students can opt any one of the following interdisciplinary compulsory courses. The ID Course opted in SEM-I cannot be opted in SEM - III.			IDE			4	80		20	100		
Total						22				500		
IDEC - 3101 IDEM -3362 IDEH - 3313 IDEI - 3124 IDEW-3275		- Communication Skills - Basic Music (Vocal) - Human Rights and Constitutional Duties - Basics of Computer Applications - Indian heritage: Contribution to the World										

IDE - Inter Disciplinary Optional Course

* Grade points of these courses will not be included in the SGPA/CGPA of semester.

Session 2022-23
Master of Science Zoology (Semester-III) Course Title: Research Techniques and Methodology (Theory) Course Code: MZOL-3481

COURSE OUTCOMES

After passing this course the student will be able:
$>\mathrm{CO} 1$ To develop detailed understanding of centrifugation and chromatography.
$>\mathrm{CO} 2$ understand various spectroscopic techniques.
$>\mathrm{CO} 3$ understand various types of electrophoretic techniques.
$>\mathrm{CO} 4$ To make the students aware about Radioisotopic techniques.

Session 2022-23
 Master of Science Zoology (Semester-III)
 Course Title: Research Techniques and Methodology (Theory)
 Course Code: MZOL-3481

Examination Time: 3 hrs

Maximum marks: 100
L-T-P: 4-0-0
Theory marks: 80
CA: 20

Instructions for the Paper Setter:

Eight questions of equal marks (16 marks each) are to be set, two in each of the four Sections (A- D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.

Unit-I

Centrifugation

Basic principles
Theory and applications of preparative and analytical centrifugation
Rotor types
Sedimentation co-efficient
Care of rotors

Chromatography

Theory, principle and application of column, paper, thin layer, ion-exchange, affinity chromatography, GLC and HPLC

Unit-II

Spectroscopy

Principle and applications of UV/Visible spectroscopy, NMR, ESR and Mass spectroscopy
Luminometry, Atomic spectroscopy
Microscopy
Scanning and Transmission Electron microscopy
Fluorescence Resonance Energy Transfer microscopy
Techniques
X-ray crystallography
Patch clamp

Unit-III

Electrophoresis

General principles
Support media
Electrophoresis of proteins
Electrophoresis of nucleic acids
Capillary electrophoresis
Microchip electrophoresis

Radioisotopic Techniques

Basic concepts of radioisotope
Theory and applications of Geiger- Muller tube
Solid and Liquid Scintillation
Safety rules for radioisotopic studies
Biological applications

Suggested Reading Material:

- Slater, R.J. (1990). Radioisotopes in Biology- A Practical Approach, Oxford University Press, NY.
- Wilson, K and Goulding, K.H. (1991). Biologist's Guide to Principles and Techniques of Practical Biochemistry. 3rd., Edward Arnold, London.
- Sawhney, S.K. and Singh, R. (2001). Introductory Practical Biochemistry, Narosa Publishing House, New Delhi.
- Tinoco Kenneth Saur and J.C. Wang. Physical Chemistry: Principles and Applications in Biological Sciences, 3rd edition.

Session 2022-23

Master of Science Zoology (Semester-III)

Course Title: Developmental Biology - I (Theory) Course Code: MZOL-3482

COURSE OUTCOMES

After passing this course the student will be able:
$>$ CO1 To develop detailed understanding of essential events of developmental biology through proper explanation of gametogenesis, fertilization, as part of early embryonic development and to impart knowledge regarding in-vitro fertilization.
$>\mathrm{CO} 2$ To impart knowledge regarding basic concepts of parthenogenesis, cleavage and gastrulation to the students.
$>\mathrm{CO} 3$ To provide adequate explanation to the students regarding cell commitment, specification and determination.
$>\mathrm{CO} 4$ To make the students aware about genetic control of development, induction and regulation of developmental events.

Session 2022-23
Master of Science Zoology (Semester-III)
Course Title: Developmental Biology - I (Theory)
Course Code: MZOL-3482

Examination Time: 3 hrs

Maximum marks: 100
L-T-P: 4-0-0
Theory marks: $\mathbf{8 0}$
CA: 20

Instructions for the Paper Setter:

Eight questions of equal marks (16 marks each) are to be set, two in each of the four Sections (A- D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.

Unit-I

Gametogenesis

Spermatogenesis
Oogenesis
Vitellogenesis
Fertilization
Types of Fertilization (External and Internal)
Acrosome reaction \& capacitation of sperm
Fusion of the egg-sperm membranes and genetic material during fertilization
The fast and slow block to polyspermy
The cortical granule reaction
Activation of egg metabolism
In vitro fertilization and embryo transplantation

Unit-II

Natural and artificial parthenogenesis
 Cleavage

Cleavage and its patterns

Gastrulation

Gastrulation and morphogenetic movements
Morphogenesis of germ layers
Morphogenetic field

Unit-III

Cell commitment and beginning of new organism
Commitment of Cells during early development
Various levels of Commitment
Specification and its types (autonomous, conditional, Syncytial)
Determination of early embryonic induction
Transdetermination

Unit -IV

Genetic Control of Development and Induction

Regulation of early development

Mechanisms of differential gene expression
Differential RNA processing Control at the level of translation
Post translational regulation of gene expression

Suggested Reading Material:-

- Balinsky, B.I.(1981). An Introduction to Embryology, Saunders, Philadelphia.
- Bellairs, R.(1971).Development Processes in Higher Vertebrates, University of Miami Press, Miami.
- Berrill. N.J.(1971): Developmental Biology. McGrawHill, New Delhi.
- Dawnpart, Developmental Biology.
- Gilbert, F. (1985,95\&2000): Developmental Biology, Sinaur.
- Goel, S.C.(1984):PrinciplesandAnimalDevelopmentalBiology,Himalaya,Bombay.
- Grant, P.(1978): Biology of Developing System.
- Spratt, N.T.Jn.(1971): Developmental Biology, Wordsworth, Belmont, Co.
- Waddigton CH. (1966):Principles of Development and Differentiation. MacMillan, New York.
- Miller, W.A.(1997). Developmental Biology Springer Verlag, New York.

Session 2022-23
 Master of Science Zoology (Semester-III)
 Course Title: General Biochemistry (Theory)
 Course Code: MZOL-3483

COURSE OUTCOMES

After passing this course the student will be able to:
$>\mathrm{CO} 1$ Explain Enzyme kinetics
> CO 2 Describe Glycolysis.
> CO 3 Reactions and regulation of citric acid cycle
$>\mathrm{CO} 4$ Oxidation of fatty acids and amino acids.

Session 2022-23
Master of Science Zoology (Semester-III)
Course Title: General Biochemistry (Theory)
Course Code: MZOL-3483

Examination Time: 3 hrs
Maximum marks: 100
L-T-P: 4-0-0
Theory marks: 80
CA: 20

Instructions for the Paper Setter:

Eight questions of equal marks (16 marks each) are to be set, two in each of the four Sections (A- D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.

Unit-I

Enzymes

Enzyme substrate complex
Active sites
Energy mechanics of enzymatic reactions
Michaelis-Menton kinetics
Vmax and Km and their significance
Modifiers of Enzyme activity
Regulatory enzymes

Unit-II

Glycolysis

Fates of glycolysis
Fates of pyruvate under aerobic and anaerobic conditions
Gluconeogenesis and the carbohydrate catabolism
Pentose phosphate pathway

Unit-III

Citric acid cycle

Oxidation of pyruvate
Production of acetate
Reactions of citric acid cycle
Regulation of citric acid cycle
Glyoxylate cycle

Unit-IV

Oxidation of fatty acids and amino acids

Metabolism and transport of fats
Oxidation of fatty acid
Generation reactions and metabolism of amino acids
Oxidative phosphorylation

Electron transport reactions in mitochondria
Shuttle system in mitochondria
Regulation of oxidative phosphorylation

Suggested Reading Material:

- Lehninger A.D. Nelson D.L. \& Cox M.M. (1993) \& (2000), Principles of Biochemistry, 2nd and 3rd ed. Worth Publishers, New York.
- Lehninger, A (2000). Principles of Biochemistry. 3rd Edition.
- Fischer, J. and Arriold, J.R.P. (2001). Instant notes in Chemistry for Biologists Viva Books Pvt. Ltd.
- Harper, H.A. (2000): Harper's Biochemistry 25th ed.
- Morris, H. Best, L.R., Pattison, S., Arerna, S. (2001). Introduction to General Organic Biochemistry. 7th Ed. Wadsworth Group.
- Sheehon, D (2000). Physical Biochemistry: Principles and Applications - John Wiley \& Sons Ltd., England.

Session 2022-23
 Master of Science Zoology (Semester-III) Course Title: Applied Zoology - II (Vertebrates) (Theory) Course Code: MZOL-3484

COURSE OUTCOMES

After passing this course the student will be able to:
$>$ CO1 Learn skill development for small scale industry such as fisheries, piggeries.
$>\mathrm{CO} 2$ Gain knowledge about processing and use of fur and wool industry.
$>\mathrm{CO} 3$ Understand selection and products of dairy animals and processing of leather industry.
> CO 4 Understanding of Pharmaceutical products from animals.

Session 2022-23
Master of Science Zoology (Semester-III)
Course Title: Applied Zoology - II (Vertebrates) (Theory)
Course Code: MZOL-3484

Examination Time: $\mathbf{3} \mathbf{h r s}$

Maximum marks: 100
L-T-P: 4-0-0
Theory marks: 80
CA: 20

Instructions for the Paper Setter:

Eight questions of equal marks (16 marks each) are to be set, two in each of the four Sections (A- D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.

Unit-I

Pisciculture

Economically important fresh water and marine fishes
Fish Farming Technologies
Factors affecting fish culture
Induced breeding methods
Products and by products from Pisciculture

Poultry

Breeds of poultry birds
Egg structure and quality, nutritive values, abnormalities in eggs, factors affecting size and egg processing
Broilers, meat processing
Poultry Rearing / Farming
Housing and equipment Poultry diseases
Poultry products and by products

Unit-II

Fur Industry

Fur producing animals
Fur farming, dressing, processing and dyeing
Fur industry in India
Wool Industry
Animals of wool industry
Types, structure and physicochemical properties of wool
Processing of wool: shearing, clearing, drying, bleaching, dyeing, spinning and twisting

Unit-III

Dairy Farming

Milching animals, Breeds, Housing, raising and Tools of management Artificial insemination and
IVF for improvement of stock
Milk composition and dairy products

Leather Industry

Animals of leather industry
Processing of skin: flaying, Curing and tanning
Enemies of skin industry

Unit-IV

Piggery

Characteristics of swine and important breeds
Breed selection, management and housing
Products (Pork, Bristles, Lard, Sausages) and by products
Diseases of Pigs

Other Utilities of Animals

Pharmaceuticals from animals (in brief)
Use of animals in vaccine production

Suggested Reading Material:

- Banarjee, G.C. (1991), Text book of Animal Husbandry. Oxford and IBH Pub, New Delhi.
- Jawal, P.L. (1977), Handbook of Animal Husbandry, I. C. A. R., Pub. New Delhi.
- Jhingaran, V.G. (1991), Fish and Fisheries of India, Hindustan Pub. Co. India.
- Mustafa, S. (1990), Applied and Industrial Zoology, Rastogi publications, Meerut.
- Sarkar, K. T. (1991), Theory and Practice of Leather manufacture. The Author, Madras.
- Shami, Q. J. and Bhatnagar, S. (2002) Applied Fisheries. Agrobios India.
- Shukla, G. S. \&Upadhaya, V. B. (1991-92), Economic Zoology, Rastogi Publications, Meerut.
- Toor, H. S. and Kaur, K. (1996), Fish Culture Manual. PAU, Ludhiana.
- Yadav, M. (2003) Economic Zoology, Discovery Publication House, New Delhi.

Session 2022-23
 Master of Science Zoology (Semester-III) Course Title: Practical V (Research Techniques and Applied Zoology-II) Course Code: MZOP-3485

COURSE OUTCOMES

After passing this course the student will be able to:

- CO1 Understand centrifugation techniques.
- CO 2 Gain practical knowledge about chromatographic techniques.
- CO3 Estimate protein content, DNA/RNA with the help of spectroscopic techniques.
- CO4 Understand various electrophoretic techniques.

Session 2022-23
Master of Science Zoology (Semester-III)
Course Title: Practical V (Research Techniques and Applied Zoology-II) Course Code: MZOP-3485

Examination Time: 3 hrs
L-T-P: 0-0-3

Maximum marks: 50
Practical marks: 40
CA: 10

Instructions for the Practical Examiners:

Question paper is to set on the spot jointly by the Internal and External Examiners. Two copies of the same should be submitted for the record to COE Office, Kanya Maha Vidyalaya, Jalandhar.

Centrifugation

-Sedimentation using Swing out Rotor and Angle Rotor Differential centrifugation
Chromatography Techniques: (for separation of macromolecules)
Paper chromatography
Thin la yer chromatography
Gel permeation chromatography

Spectrophotometric Techniques

Preparation of standard curve of BSA, DNA, RNA
Measurement of transmission of light through different solutions or substances at different wavelengths of light.
Estimation of DNA/RNA

Electrophoresis Techniques

-Preparation of native polyacrylamide gel.
-Gel separation of proteins by native PAGE.
-Preparation of SDS-polyacrylamide gels
-Separation of proteins by SDS-PAGE.
-Direct and Indirect ELISA
Note: Vist to a fish farm/poultry form/pig farm/sheep or goat farm/meat processing industry/leather industry/wool industry and preparation of report.

Session 2022-23
 Master of Science Zoology (Semester-III) Course Title: Practical VI (Developmental Biology and Biochemistry) Course Code: MZOP-3486

COURSE OUTCOMES

After passing this course the student will be able to:
$>\mathrm{CO} 1$ study different larval forms across animal kingdom and developmental stages of chick.
$>\mathrm{CO} 2$ study developmental stages of frog and metamorphosis.
$>\mathrm{CO} 3$ study spermatogenesis, oogenesis, testis and ovaries.
$>\mathrm{CO} 4$ do quantitative analysis of proteins, lipids and carbohydrates.

Session 2022-23
Master of Science Zoology (Semester-III) Course Title: Practical VI (Developmental Biology and Biochemistry) Course Code: MZOP-3486

Examination Time: 3 hrs

L-T-P: 0-0-3
Maximum marks: 50
Practical marks: 40
CA: 10

Instructions for the Practical Examiners:

Question paper is to set on the spot jointly by the Internal and External Examiners. Two copies of the same should be submitted for the record to COE Office, Kanya Maha Vidyalaya, Jalandhar.

1. Study of different larval forms across the animal Kingdom using charts/models/videos.
2. To study developmental stages of chick through slides/charts.
3. To study developmental stages of frog through slides/charts
4. Metamorphosis through charts/audio video means in frog and insect.
5. Study of spermatogenesis and oogenesis through permanent slides
6. Study of testis and ovary through permanent slides.
7. Quantitative analysis of proteins by Lowry/ Bradford method.
8. Estimation of Lipids
9. Estimation of Carbohydrates

Kanya Maha Vidyalaya, Jalandhar (Autonomous)

SCHEME AND CURRICULUM OF EXAMINATIONS OF TWO-YEAR DEGREE PROGRAMME
(Under Credit Based Continuous Evaluation Grading System) (CBCEGS)
Session 2022-23

Master of Science (Zoology) Semester-IV											
Course Code	Course Name	Course Hours Type Credits Per Week ${ }^{\text {Pr }}$			Total Credits	Marks				Exami nation time (in hours)	
					Ext.	CA	Total				
					L			P			
$\begin{aligned} & \text { MZOL- } \\ & 4481 \end{aligned}$	Animal Behavior and Wildlife Conservation	C	4	4-0-0		4	80	-	20	100	3
$\begin{array}{\|c\|} \hline \text { MZOL- } \\ 4482 \\ \hline \end{array}$	Molecular Genetics	C	4	4-0-0		4	80	-	20	100	3
$\begin{gathered} \text { MZOL-C } \\ 4483 \end{gathered}$	Concepts of Immunology	C	4	4-0-0	4	80	-	20	100	3	
$\begin{array}{\|c\|} \hline \text { MZOL-I } \\ 4484 \end{array}$	Developmental Biology- II	C	4	4-0-0	4	80	-	20	100	3	
$\begin{array}{\|c\|} \hline \text { MZOL- } \\ 4485 \\ \hline \end{array}$	Biosystematics	C	4	4-0-0	4	80	-	20	100	3	
$\begin{gathered} \text { MZOP- } \\ 4486 \end{gathered}$	Practical-VII(Animal Behavior and Wildlife Conservation)	C	6	0-0-3	3	-	40	10	50	3	
$\begin{array}{c\|} \hline \text { MZOP- } \\ 4487 \\ \hline \end{array}$	Practical-VIII (Genetics and Biosystematics)	C	6	0-0-3	3	-	40	10	50	3	
$\begin{gathered} \hline \text { MZOD- } \\ 4488 \\ \hline \end{gathered}$	Project	C	6	0-0-3	3	-	40	10	50	3	
Total					29				650		

Session 2022-23
 Master of Science Zoology (Semester-IV)
 Course Title: Animal Behaviour and Wildlife Conservation (Theory) Course Code: MZOL-4481

COURSEOUTCOMES

After passing this course the student will be able to:
$>$ CO1 Demonstrate knowledge of key concepts in animal behavior, its patterns, and analysis. It will also enable the students to understand the proximate controls of behavior including the role of hormones, the animal's genotype and the animal's environment in the development of behavior
$>\mathrm{CO} 2$ Adaptive significance of behavior, emphasizing social behavior, territoriality, sexual selection, parental care and mating systems
> CO3Understandingandawarenessforwildlifeconservation. To impart knowledge regarding conservation of threatened animal species.
$>\mathrm{CO} 4$ Understand the significance of various wildlife projects for conservation of threatened species and the status of wildlife in Punjab.

Examination Time: 3 hrs

Maximum marks: 100
L-T-P: 4-0-0

Theory marks: 80
CA: 20

Instructions for the Paper Setter:

Eight questions of equal marks (16 marks each) are to be set, two in each of the four Sections (A- D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.

Unit-I

Introduction

Ethology as a branch of biology
Animal Psychology - classification of behavioural patterns
Analysis of behaviour (ethogram)
Neural control of Behaviour
Hormonal control of Behaviour
Genetic and environmental components in the development of behaviour

Communication

Chemical, Visual tactile and Audio communication

Functions of communication

Song specificity in birds
Host-parasite relations

Unit-II

Social Behaviour

Aggregations-schooling in fishes, Flocking in birds, Herding in mammals, Advantages and disadvantages of living in groups
Group selection, kin selection, altruism, reciprocal altruism, inclusive fitness
Social organization in insects and primates

Reproductive Behaviour

Mating and Courtship behaviour
Sexual selection
Parental care
Learning and Memory
Conditioning, Habituation, Associative learning, Reasoning and Cognitive skills

Unit-III

Wild life

Biodiversity as a resource and causes of its depletion
Methods of studying wildlife
Wildlife conservation measures
Role of zoos, parks and sanctuaries for conservation of some wild animals Laws,
legislation and statuary bodies for protecting wildlife
Red data book, endangered, vulnerable, rare, threatened and intermediate species

Unit-IV

Status of Wildlife in Punjab

National and state animals of India
Special projects for Endangered and Threatened Species and concerns
Project Tiger
Project Hangul
Project Rhino
Project Elephant
Gir Lion Sanctuary Project
Project Great Indian Bustard
Crocodile breeding Project
Ecology \& Conservation of the Himalayan Musk deer and the Manipur Brow
antlered deer

Suggested Reading Material:

- Alcock, J. (1998), Animal behaviour, An evolutionary approach Sinauer Assoc., Sunderland, Mass, USA.
- Ali, S. (1971), The Books of Indian Birds, Bombay Natural History Society, Bombay.
- Burton, L. D. (2003), Fish and Wildlife: Principles of Zoology and Ecology. Delmar Thompson Learning Pb .
- Dasmann, R. F., (1982), Wildlife Biology, Wiley Eastern, New Delhi.
- Drickamer, L. C. and Vessey, S. H. (1986), Animal Behaviour - Concepts, Processes and Methods. (2nd ed.), Wordsworth Publ. Co., California.
- Fulbright, Timothy, E. and Hewitt, D. G. (2008). Wildlife Science: Linking Ecological
- Theory and Management Applications. CRC Press, Taylor and Francis :BocaRaton, F L.
- Giles, R. H. (1984), Wildlife Management Techniques, Natraj Publishers, Dehradun.
- Gopal, R. (1992), Fundamental of Wildlife management Justice Home Allahabad.
- Goodenough, J., McGurie and Wallace, R. A. (2001), Perspective on animal behaviour. John Wiley \& Sons, Inc. New York.
- Hosetti, B. B. (1997), Concepts in Wildlife Management, Chawla Press, Delhi.
- Huntingford F. (1984), The study of animal Behaviour, Chapman and Hall, London.
- Manning, A. and Dawkins, M. S. (1992\& 1998), An Introduction to Animal Behaviour , 4th ed. (Cambridge low price editions). Cambridge University Press, Cambridge.
- Manning, A. (1979), An Introduction to Animal Behaviour, 3rd Edition . The English Language Book Society and Edward Arnold Publishers Ltd.
- McFarland, D. (1985 \& 1999), Animal Behaviour. Pitman Publishing Ltd. London.
- Majupuria T. C. (1990), Wildlife Wealth of India (Resources and Management), ISBN, Tecpress Services, Thailand.
- Moulton, M. P. and Sanderson, J. (1997), Wildlife issues in a changing world. St. Luice Press Florida.
- Negi, S. S. (1995), Hand Book of National Park, Sanctuaries and Biosphere Reservoirs in India, Indus publishing Co., New Delhi
- Sharma, B. D. (1994), High Altitude Wildlife of India, Oxford IBH, New Delhi.
- Sharma, B.D. (1999), Indian Wild Life Resources Ecology and Development . Daya Publishing House, Delhi.
- Sharma, B.D. (2002), Man environment and wildlife animal. IBH Publishing Co., Pvt . Ltd. New Delhi.
- Teague, R. D. (1987), A manual of Wildlife Conservation, Natraj Publishers, Dehradun.
- Tikadar, B. K. (1988), Threatened Animals of India, Publications of Zoological Survey of

India, Calcutta.

- Tirvedi, P.R. and Singh, U. K. (1996), Environmental Laws of Wildlife.

Session 2022-23

Master of Science Zoology (Semester-IV)
Course Title: Molecular Genetics (Theory)
Course Code: MZOL-4482

COURSE OUTCOMES

After passing this course the student will be able to:
$>\mathrm{CO} 1$ Describe DNA replication and DNA repair.
$>\mathrm{CO} 2$ Describe transcription and Post-transcriptional modifications in RNA.
> CO3 Explain translation in prokaryotes and eukaryotes
$>\mathrm{CO} 4$ Understand Genetics of Cancer.

Session 2022-23
Master of Science Zoology (Semester-IV)
Course Title: Molecular Genetics (Theory)
Course Code: MZOL-4482

Examination Time: 3 hrs
L-T-P: 4-0-0

Maximum marks: 100
Theory marks: 80
CA: 20

Instructions for the Paper Setter:

Eight questions of equal marks (16 marks each) are to be set, two in each of the four Sections (A- D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.

Unit-I

DNA replication and Repair
 \section*{Replication}

Mechanism of Prokaryotic and Eukaryotic DNA replication
Enzymes and accessory proteins involved in DNA replication

Repair

Overview of DNA Repair
DNA Mismatch Repair system
General Excision Repair system
Specialised DNA Repair Mechanisms
SOS Error Prone Repair in Bacteria
Repair in Eukaryotes

Unit - II

Transcription

Prokaryotic Transcription
Eukaryotic Transcription
RNA Polymerase
Post-transcriptional Modifications in RNA
5' - Cap formation
Transcription termination
3 '- end processing and polyadenylation
Splicing, Editing, mRNA stability
Mechanism of transcription regulation
Transcriptional and post transcriptional gene silencing

> Unit - III

Translation

Genetic code
Prokaryotic and Eukaryotic translation
The translational machinery
Mechanism of initiation, elongation and termination
Co- and post translational modification of proteins
Regulation of translation

Unit - IV

Genetics of Cancer

Development and Causes of Cancer
Oncogenes
Tumor Suppressor Genes
Molecular Approaches to cancer treatment

Suggested Reading Material:

- Ayala, F.J. \& Kiger, Jr. J.A. (1980) Modern Genetics. The Benjamin Cummings Publishing Co. Inc.
- Brown T.A. (1992). Genetics- A Molecular Approach, 2nd ed. Van NostrandRainhold (international).
- De-Robertis, F.D.P. and De-Robertis Jr., E.M.E. (1987). Essentials of Cell and Molecular Biology, Saunders, Philadelphia.
- Gardener, E.J., Simmons, M.T.J. \&Sunstad, D.P. (1999) : Principles of Genetics, 8th ed. John Wiley \& Sons, New York.
- Miglani, G.S. (2000). Basic Genetics Narosa Publishing House, New Delhi.
- Weaver, R.F. and Hedrick, P.W. (1992). Genetics Wm. C. Brown Publishers Dubuque.
- Zubay. U.G. (1987), Genetics. The Cummings Publishing Co., Inc.

Session 2022-23
 Master of Science Zoology (Semester-IV)
 Course Title: Concepts of Immunology (Theory) Course Code: MZOL-4483

COURSE OUTCOMES

After passing this course the student will be able to:
$>$ CO1 Describe the basic mechanisms, distinctions and functional interplay of innate and adaptive immunity.
$>\mathrm{CO} 2$ define the cellular/molecular pathways of humoral/cell-mediated adaptive responses and understand the cellular as well as molecular aspects of lymphocyte activation, homeostasis, differentiation, and memory.
$>\mathrm{CO} 3$ Understand the molecular basis of complex, cellular processes involved in inflammation and immunity, in states of health and disease.
> CO 4 Understand immunodiagnostics techniques.

Examination Time: $\mathbf{3} \mathbf{~ h r s}$

L-T-P: 4-0-0

Maximum marks: 100
Theory marks: $\mathbf{8 0}$
CA: 20

Instructions for the Paper Setter:

Eight questions of equal marks (16 marks each) are to be set, two in each of the four Sections (A- D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.

Unit-I

Introduction

Types of immunity-innate and adaptive
Features of immune response-memory
Specificity and recognition of self and non-self
Terminology and approaches to the study of immune system
Cells and Organs of the immune system:
Heterogeneity of lymphoid cells
Primary and secondary lymphoid organs
Mucosa Associated Lymphoid Tissue (MALT), GALT, CALT
Lymphocytes traffic

Unit-II

Humoral Immunity

$\mathrm{Ag}-\mathrm{Ab}$ interaction
Affinity and avidity
High and low affinity anti-bodies
Classes and structure of immunoglobulins
B-cell generation, activation and proliferation
Complement fixing antibodies and complement cascade
Cell Mediated Immunity
Structure of MHC
Antigen processing and presentation
T-cell receptor- role and structure
T-cell maturation, activation and differentiation

Unit - III

Immunological Disorders

Types of Hypersensitivity reactions
Mechanism of Hypersensitivity reactions
Autoimmune disorders, their underlying molecular mechanism Immunodeficiency disorders
AIDS

Unit-IV

Immunodiagnostic Procedures
Various types of Immunodiffusion and immunoelectrophoretic procedures
Immunoblot
ELISA
RIA
Agglutination of pathogenic bacteria
Haemagglutination and inhibition

Suggested Reading Material:

- Kuby, J., Immunology W. H. Freeman and Company, New York, (1992).
- Roitt, I. M. Brostoff, J and Male, D., Immunology, 2nd edition, Gover Medical Publishing, New York. (1989).
- Roitt, I. M., Essential Immunology, 6th edition, Blackwell Scientific Publications, Oxford. (1988).
- Paul, W.E., Fundamental Immunology, 2nd edition, Raven Press, New York. (1989).
- Playfair, J.H.L.: Immunology at a glance, 5th edition, Blackwell Scientific Publications, Oxford. (1992).
- Paul, W.E.: Immunology; recognition and response. W.H. Freeman, New York. (1991).

Session 2022-23

Master of Science Zoology (Semester-IV)
 Course Title: Developmental Biology-II (Theory) Course Code: MZOL-4484

COURSE OUTCOMES

After passing this course the student will be able to:
> CO1 Impart knowledge regarding cell cell communication, induction and competence.
$>\mathrm{CO} 2$ Develop detailed understanding of essential events of organogenesis in developmental biology.
$>\mathrm{CO} 3$ Explain the adequate explanation to the students regarding concepts of organizer, axis specification and influence of extrinsic factors on the genetic control.
$>\mathrm{CO} 4$ Gain adequate information regarding metamorphosis, regeneration and growth.

Examination Time: 3 hrs

L-T-P: 4-0-0

Maximum marks: 100
Theory marks: 80
CA: 20

Instructions for the Paper Setter:

Eight questions of equal marks (16 marks each) are to be set, two in each of the four Sections (A- D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.

Unit-I

Cell -Cell Communication in development

Role of adhesion molecules
Induction and competence of cells during development
Vulval formation
Vertebrate lens regeneration
The extracellular matrix as a source of developmental signals
The epithelial Mesenchymal transition

Unit-II

Organogenesis

Ectodermal derivatives

Formation of neural tube and brain Differentiation of neurons in the brain
Tissue architecture of the central nervous system
Formation of the eye
Mesodermal derivatives
Formation of somites
Osteogenesis
Formation of dorsal aorta Formation of Urogenital system
Development of heart and blood vessels
Endodermal derivatives
The pharynx
The digestive tube and its derivatives
The respiratory tube

Unit-III

Organizer and axis specification
Axis Specification: Invertebrates (Drosophilla) and Vertebrates(Amphibian/Zebra Fish)
Concept of Organizer and its Role
Nucleus and cytoplasmic interactions during development Influence of extrinsic factors on genetic control

Metamorphosis, Regeneration and Growth
Metamorphosis
Metamorphosis in insects
Metamorphosis in amphibians
Regeneration
Stem cell mediated Regeneration in Flatworm Regeneration in Hydra
Regeneration in Salamander limbs
Compensatory regeneration of mammalian liver
Concept of growth at cellular, subcellular and organ level

Suggested Reading Material:-

- Balinsky, B.I.(1981). An Introduction to Embryology, Saunders, Philadelphia.
- Bellairs,R.(1971).Development Processing Higher Vertebrates, University of Miami Press, Miami.
- Berrill. N.J. (1971): Developmental Biology. McGraw Hill, New Delhi.
- Dawnpart, Developmental Biology.
- Gilbert, F. (1985,95 \& 2000): Developmental Biology, Sinaur.
- Goel, S.C.(1984): Principles and Animal Developmental Biology, Himalaya, Bombay.
- Grant, P.(1978): Biology of Developing System.
- Spratt, N.T. Jn. (1971): Developmental Biology, Wordsworth, Belmont, Co.
- Waddigton CH. (1966): Principles of Development and Differentiation. MacMillan, NewYork.
- Miller, W.A. (1997). Developmental Biology Springer Verlag, New York.

Session 2022-23
 Master of Science Zoology (Semester-IV)
 Course Title: Biosystematics (Theory)
 Course Code: MZOL-4485

COURSE OUTCOMES

After completion of course the student will be able to:
$>\mathrm{CO1}$ evaluate the taxonomic characters and apply this for the identification and classification of living things.
$>\mathrm{CO} 2$ Apply the various taxonomic procedures for collection, preservation and identification of living organisms.
$>\mathrm{CO} 3$ Knowledge of different types of publications
> CO 4 Knowledge about major and minor phyla

Session 2022-23
Master of Science Zoology (Semester-IV)
Course Title: Biosystematics (Theory)
Course Code: MZOL-4485

Examination Time: 3 hrs
L-T-P: 4-0-0

Maximum marks: 100
Theory marks: 80
CA: 20

Instructions for the Paper Setter:

Eight questions of equal marks (16 marks each) are to be set, two in each of the four Sections (A- D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.

Unit-I

Introduction

Terms / Definitions
History/ Development of theories, kinds of classification
Importance of Biosystematics
Material basis of Biosystematics
Different attributes or evidences
Character kinds
Character weighing

New aspects of Biosystematics

Cytotaxonomy
Chemotaxonomy
Molecular taxonomy

Unit-II

Taxonomic Procedures

Taxonomic collections, Preservation, Identification
Taxonomic keys (Different kind, salient features, merits and demerits)
International Code of Zoology/Nomenclature
Nomenclature Principles, important rules, their interpretation and application in scientific nomenclature

Unit-III

Taxonomic Publications

Scientific publications
Systematic publications
Contents of publications

Taxonomic Hierarchy

Species category and various concepts of species
Hierarchy of categories
Lower and higher categories
Subspecies and other sub specific categories
Decision at species and sub species level

History of kingdom systems (resume of whittakar's system and other recent systems of classification)

An outline of classification of kingdom Animalia
Salient features of minor phyla.

Suggested Reading Material:

- Gote, H.E. (1982), Animal Taxonomy, Edward Arnold.
- Jaffery, C. (1973), Biological Nomenclature, Edward Arnold.
- Kapoor, V.C. (1987), Theory and Practice of Animal Taxonomy, IPH Pb. New Delhi.
- Mayer, E. (1969), Principle of Systematic Zoology, McGraw Hill Book Co. London.
- Mayer, E. \&Aschhok (1991), Principles of Systematics, McGraw Hill Book Co. London.
- Minell, A. (1993), Biological Systematics, The State of Art. Chapman \& Hall, London.
- Quicke, D.L.J, (1996), Principles \& Techniques of Contemporary Taxonomy, Blacky Academic \& Professional, London, New York, Madras.
- Kitching, I.J., Forey, P.L. Humpheries, C.J. \& William, D. 1998. Cladistics: Theory and Practice of Parsimony Analysis, Oxford University Press.
- Sebuh, Randall T. 2000, Biological Systematics: Principles \& Applications Cornell University Press 256 pp.
- Winston, J. 1999. Describing Species Practical Taxonomic Procedure of Biologists. Columbia University Press, Lincoln, R.J. Dictionary of Ecology, Evolution and Systematics.

Session 2022-23
 Master of Science Zoology (Semester-IV)
 Course Title: Practical VII Animal Behaviour and Wildlife Conservation
 Course Code: MZOP-4486

COURSE OUTCOMES

After passing this course the student will be able to:
$>\mathrm{CO1}$ study influence of temperature and food preference
$>\mathrm{CO} 2$ understand Geotaxis and humidity preference.
> CO 3 study phototaxis in invertebrates.
> CO 4 Understand different behavior patterns in animals.

Examination Time: $\mathbf{3}$ hrs
L-T-P: 0-0-3

Maximum marks: 50
Practical marks: 40
CA: 10

1. To study the food preference in animals.
2. To investigate the locomotion withdrawal and habituation behaviors.
3. To study the latent and operant learning.
4. To study the thigmotaxis response.
5. To study chemical communication in ants.
6. To study the phenomenon of geotaxis
7. To study the phototaxis to point source and different colours of light
8. To study grooming behaviour
9. To study web spinning habits in spiders.
10. Use of videos to study the
a) Tarsal response in butterfly/housefly.
b) Equilibrium study on housefly.
c) Effect of temperature on opercular movement in fish.
11. To study animal behaviour patterns using photographs.
12. To mark the following on map
a. World hotspots
b. National parks in India.
13. Assignment on Wildlife project.

Session 2022-23

Master of Science Zoology (Semester-IV)
Course Title: Practical VIII Genetics and Biosystematics
Course Code: MZOP-4487

COURSE OUTCOMES

After passing this course the student will be able to:
> CO1 Understanding of pedigree analysis and preparation of family charts.
> CO 2 Knowledge of isolation of DNA from human blood and buccal cells.
> CO 3 Understanding of cell division.
$>\mathrm{CO} 4$ Understanding of inheritance of morphogenetic human characters and knowledge of collection, preservation and nomenclature of animals.

Session 2022-23

Master of Science Zoology (Semester-IV)
Course Title: Practical VIII (Genetics and Biosystematics) Course Code: MZOP-4487

Examination Time: 3 hrs
Maximum marks: 50
L-T-P: 0-0-3
Practical marks: 40
CA: 10

1. To prepare and study the karyotype of human cell from meta phase pictures.
2. To study the pedigree analysis of a family.
3. To study blood groups in human beings.
4. Demonstration of Barr body in the oral epithelium of human beings.
5. To study different stages of mitosis in root tips of Alliumcepa.
6. To study permanent slides of:-
a. Mitosis in bone marrow cells of rat.
b. Stages of meiosis intest is of rat/grasshopper/Alliumсера.
c. Polytene chromosomes in third in star larvae of Zaprionusparavittiger.
7. To study dermatoglyphics with palms of hands and fingertips.
8. To study inheritance of morphogenetic human characters.
9. Isolation of DNA from plant tissues.
10. Numericals on Mendelian laws of inheritance and linkage.
11. Serum extraction from blood.
12. ELISA \& RIA, Rocket Immuno-electrophoresis.
13. Demonstrationofvariouskindsofequipmentrequiredforcollectionandpreservationofanimals.
14. Videos of Methods of collection and preservation.
15. Kinds of keys and their use at higher and lower category levels.

Session 2022-23
 Master of Science Zoology (Semester-IV)
 Course Title: Project
 Course Code: MZOP-4488

COURSE OUTCOMES

$>\mathrm{CO} 1$ Express their innovative ideas and creativity on any scientific phenomenon \& develop interest in research aptitude.
> CO 2 Learn to study literature.
> CO 3 Explore field work and research work.
> CO 4 Learn how to design an experiment and various research strategies.

Session 2022-23
 Master of Science Zoology (Semester-IV)
 Course Title: Project
 Course Code: MZOP-4488

Examination Time: 3 hrs
Maximum marks: 50
L-T-P: 0-0-3
Practical marks: 40
CA: 10

Students will Students can opt for any one from the following and will submit a detail report after successful completion:
(a) Review on a research topic
(b) Small Research Project
(c) Hands on Training in any Industry/Research Lab

Marks will be given on the basis of presentation and viva delivered by student.

