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Exam. Code : 211001
Subject Code : 3836

M.Sc. Mathematics Ist Semester
MATH-553 ALGEBRA-I
Time Allowed—3 Hours] [Maximum Marks—100
Note :— Candidates are required to attempt five questions,
selecting at least one question from each Section.

The fifth question may be attempted from any
-Section.

SECTION—A

I. (a) LetH and K be two subgroups of a group G. Then
HK is subgroup of G if and only if HK=KH. 6

(b) The intersection of two subgroups of finite index is
of finite index. 4

(c) State and prove Lagrange's theorem and prove that
for every a € G, o(a) | n, where n is order of G.
10

Z
2. (a) Every cyclic group is isomorphic to Z or to e
for some n € N. 7

(b) Give an example of a group G having subgroups K
and T such that K is normal in T and T is normal
in G but K is not a normal subgroup of G. 3
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Prove that a non-abelian group of order 6 is isomorphic

to S,. 10
SECTION—B

Show that each dihedral group is homomorphic to

the group of order 2. 5

Find Aut(K) where K is the Klein four-group. 5§

If a permutation ce S, s a product of r transpositions
and also a product of s transpositions, then r and §
are either both even or both odd. 10

Show that A is simple for alln > 5. i 10

Show that the group Z, cannot be written as the
direct sum of two nontrivial subgroups. 3

Prove that there is a 1-1 correspondence between
the family F of nonisomorphic abelian groups of order
P, p prime and the set P(e) of partitions of e. 5§

SECTION—C

Let G be a group containing an element of finite
order n > 1 and exactly two conjugacy classes.

Prove that | G | = 2. 7
State and provev Jordan-Holder theorem. 7
Let G be a group of order 108. Show that there
exist a normal subgroup of order 27 or 9. 6
State and prove Sylow's second theorem. 7
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Let G be a finite group of order p", where p is
prime and n > 0. Then prove that Z N N is nontrivial
for any nontrivial normal subgroup N of G. 7

Show that a simple group is solvable if and only if

it is cyclic. 6
SECTION—D

Find all ideals in Z and also in Z, 5

If R is a ring with unity, then each maximal ideal is .
prime. Is converse true ? Justify. 6

Let F be a field. Then characteristic of F is either 0
or a prime number p. , 5

Define idempotent and find the idempotents of ring
- Al : 4

12
Show that there exist a ring homomorphism
f:Z — Z_ if and only if n | m. 6
Prove that the ideal <x* + x + 1> in the polynomial
ring Z,[x] over Z, is a prime ideal. 6
Define integral domain and show that a finite integral
domain is a division ring. 8
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Exam. Code - 211001

r)igitized by KMV College Library, Jalandhar
Subject Code : 3837

M.Sc. Mathematics 1% Semester
MECHANICS—I
Paper—MATH-554
Time Allowed—Three Hours] [Maximum Marks—100

Note :— Attempt FIVE questions in all, selecting at least
ONE question from each Section. All questions
carry equal marks.

SECTION—A
1.  Obtain the radia] and transverse components of

acceleration of a particle which describe the plane
curve r = f(0) in the form -

f—réz,l—i(rzé),
r do

If the curve is the equiangular spiral r = a exp(B cot a)
and if the radius vector to the particle has a constant
angular velocity, show that the resultant acceleration
of the particle makes an angle 2o with the radius

2
vector and its magnitude L, where v is the speed of
r

the particle.
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2. (a)

(b)

(b)

Show that two equal and opposite rotations of a
rigid body about distinct parallel axes are
equivalent to a translation of the body.

A rigid lamina is moving in its own plane and
one point A in it has velocity U relative to a
fixed origin 0. If W is the angular velocity of the
lamina, show that the point P in it has velocity

U+WXT relative to 0, where T=AP. Hence or
otherwise prove that the position vector F’ of the

~ Instantaneous centre I of the lamina relative to A

is given by 7' = (Wxi)w?,

SECTION—B
Explain the Principle of conservation of energy
for a single particle.
Define the impulse of a force over a finite time
interval and derive the equation of impulsive
motion of a particle. Also show that the K.E.

R e ; i
gained is - (V1 +V,) where an impulse ] changes

the velocity of a particle of mass m from Vl to Vz A
Show that the acceleration of a particle P moving
along a plane curve c is st+ (é2 /p)n, where s

denotes the arc length along c, t,7i are unit vectors
along the tangent and normal at P respectively
and p is the radius of curvature at P.
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(b) Show that the rate of increase of angular
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momentum about the axis is equal to the moment
of the resultant force which acts on the particle,

SECTION—C

Derive an expression for the differential equation
of a particle moving in a central orbit in pedal
co-ordinates.

If P = p(u? — au®), where a > 0 and a particle is
projected from an apse at a distance a from the
centre of force with a velocity (nc/a?)'?; where
a > ¢, prove that the other apsidal distance of the
orbit is a(a + ¢)/(a — ¢) and find the apsidal angle.
A fixed nucleus S, having positive charge, Ze repels
a particle P having mass m and positive charge
¢'. P is projected from a great distance at infinity
with initial speed V, in a direction whose
perpendicular distance from S is d, the medium
being a vacuum. Show that its ultimate direction

of motion makes an angle ¢ with an initial direction

where cotg (dm v}/Zee").

A comet travelling in an elliptic orbit round the
sun under an attraction p/r? per unit mass has its
tangential velocity increased a small amount §v.
Taking 2a to be the major axis and e the eccentricity
of the former orbit, show that the comet’s least
distance from the sun is increased by

448v[a>(1-e)/u(1+e)]?
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SECTION—D

7. (a) State and prove the parallel axes theorem for
moments of inertia and for products of inertia
for a system of particles.

(b) A square of side 2a has particles of masses m.
2m, 3 m, 4 m at its vertices. Find the principal
moments of inertia at the centre of the square
and also the directions of the principal axes.

8. (a) Define equimomental systems. Show that a solid
cuboid of mass M is equimomental with masses

M g . M a3
24 at the mid points of its edges and 3 at its

centre.

(b) Incoplanar distribution, show that the M.I. attains
extreme values along the principal axes through
O in the plane of distribution.

4242(2118)/DAG-10925 4 1800




