Faculty of Computer Applications

SYLLABUS FOR

Master of Computer Applications

(Semester I)

(Under Credit Based Continuous Evaluation Grading System)

Session: 2025-26

The Heritage Institution KANYA MAHA VIDYALAYA JALANDHAR (Autonomous)

KANYA MAHA VIDYALAYA JALANDHAR

SCHEME AND CURRICULUM OF EXAMINATION OF TWO-YEAR DEGREE PROGRAMME

PG DEPARTMENT OF COMPUTER SCIENCE AND APPLICATIONS MASTER OF COMPUTER APPLICATIONS (MCA) SEMESTER-I

Course Code	Course Title	Course	Cred	T	Mar	·ks		Examination time (in			
Course Coue	Course Title	Type	Credits		Takal			CA	hours)		
				Total	Ext.		CA				
			L-T-P	Total		L	P				
MCAL-1121	Design and Analysis of Algorithm	С	4-0-0	4	100	70	-	30	3		
MCAL-1122	Web Technologies	С	4-0-0	4	100	70	1	30	3		
MCAL-1123	Data Science Foundation	С	4-0-0	4	100	70	-	30	3		
MCAL-1124	Probability and Statistical Techniques	С	4-0-0	4	100	70	-	30	3		
MCAL-1125 (Opt-II)	Information Security (General Elective)	Е	4-0-0	4	100	70	-	30	3		
MCAP-1126	Programming Lab based on Web Technologies	С	0-0-2	2	50	-	35	15	3		
MCAP-1127	Programming Lab based on Data Science	С	0-0-2	2	50	-	35	15	3		
MCAL-1128	*Fundamentals of Computers (Bridge Course)	В	2-0-0	2	50	35	-	15	3		
MCAL-1129	*Programming in C (Bridge Course)	В	2-0-0	2	50	35	-	15	3		
**Students can opt any one of the following interdisciplinary courses	IDE										
Total				24	600						
IDEC-1101	Effective Communication Skills										
IDEM-1362	Basics of Music (Vocal)										
IDEI -1313	Human Rights and Constitutional Duties										
IDEW-1275	Indian Heritage: Contribution to the world										
	(**Credits	of these co	urses will	not be a	dded to	SGP	A/C	GPA)			

* For students having no mathematics background at 10 + 2 or graduation level, compulsory bridge courses have to be qualified. Credits and grade points of these courses will not be included to the SGPA/CGPA of the semester/programme.

Options for General Elective										
Opt	MCAL-	Advanced	Е	4-0-0	4	100	70	-	30	3
- I	1125	Computer								
		Graphics								
Opt	MCAL-	Information	Е	4-0-0	4	100	70	-	30	3
-II	1125	Security								
Opt	MCAL-	***Skill	Е							
-III	1125	oriented								
		MOOCS								
		(related to								
		IT/AI/								
		Computer)								

***Skill Oriented MOOCS courses can be explored on Swayam Portal and other websites offering MOOCS with at least 4 credits, otherwise Dept. will provide a list of available MOOCS Courses.

Note: Student can opt any of one General Elective Courses.

(Two Year Degree Programme) (CBCEGS) (Session 2025-26)

COURSE TITLE: DESIGN AND ANALYSIS OF ALGORITHM COURSE CODE: MCAL-1121

L-T-P: 4-0-0 Theory:70

Examination Time: 3 Hours.

Instructions for Paper Setter -

Eight questions of equal marks (14 Marks each) are to set, two in each of the four sections (A-D). Questions of sub-sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be divided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any section.

UNIT-I

Introduction to Algorithms: Definition and characteristics of algorithms, analyzing algorithms, importance of algorithm design, asymptotic notations.

Basic Sorting and Searching Algorithms: Bubble sort, insertion sort, selection sort, linear search, binary search.

UNIT-II

Greedy Method: General strategy, fractional knapsack problem, minimum spanning tree – Prim's and Kruskal's algorithms.

Dynamic Programming: General strategy, matrix chain multiplication, 0/1 knapsack problem, Floyd-Warshall all-pairs shortest paths.

UNIT-III

Backtracking: General method, N-Queens problem, sum of subsets, graph coloring, Hamiltonian cycle.

Amortized Analysis: Aggregate, accounting, and potential methods – example of stack operations.

UNIT-IV

Graph Algorithms: BFS and DFS traversal, connected components, topological sort,

articulation points.

NP-Completeness: P, NP, NP-Complete.

References/Text Books:

- 1. Cormen, Leiserson, Rivest, and Stein Introduction to Algorithms, PHI.
- 2. Horowitz, Sahni, Rajasekaran Fundamentals of Computer Algorithms, Galgotia.
- 3. Aho, Hopcroft, Ullman *The Design and Analysis of Computer Algorithms*, Pearson Education.
- 4. Kleinberg and Tardos *Algorithm Design*, Pearson.
- 5. Dasgupta, Papadimitriou, Vazirani Algorithms, McGraw-Hill.

(Two Year Degree Programme) (CBCEGS)
(Session 2025-26)

COURSE TITLE: WEB TECHNOLOGIES COURSE CODE: MCAL-1122

L-T-P:4-0-0 Theory:70

Examination Time: 3 Hours.

Instructions for Paper Setter -

Eight questions of equal marks (14 Marks each) are to set, two in each of the four sections (A-D). Questions of sub-sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be divided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any section.

UNIT-I

Web Essentials, Markup languages, CSS Basics of Client side programming, Java script language, java script objects, host objects, Browsers and DOM

UNIT-II

Basics of Server side programming, Java servlets- Life cycle, Servlet API, Reading Servlet parameters, Handling HTTP requests and responses, Cookies and Session Tracking ASP/JSP, Basics of ASP/JSP objects, simple ASP and JSP pages

UNIT -III

Representing Web data, Database connectivity, JDBC, Dynamic web pages, XML, DTD, XML schema, DOM, SAX, XQuery, Building web applications, cookies, sessions, open source environment Introduction to PHP, basics, PHP File handling, file upload, cookies, error handling, PHP MySQL introduction

UNIT-IV

Middleware technologies, Ecommerce architecture and technologies, Ajax, Advanced web technologies and tools. Case Studies: PHP and MySQL case studies.

References/Text Books:

- 1. Jeffery C Jackson, "Web Technology-A Computer Science Perspective", Pearson Education
- 2. Chris Bates, "Web Programming- Building Internet Applications", Wiley India
- **3.** Web Technologies: HTML, JavaScript, PHP, Java, JSP, ASP.NET, XML and Ajax, Black Book by Kogent Learning Solutions Inc.,
- 4. Web Technologies: A Developer's Perspective by N.P. Gopalan and J. Akilandeswari,
- **5.** Java Server Programming: Java EE6 (J2EE 1.6) Black Book by Kogent Learning Solutions Inc.
- 6. Beginning PHP and MySQL: From Novice to Professional by W. Jason Gilmore,
- 7. XML: How to Program by Deitel & Deitel.

(Two Year Degree Programme) (CBCEGS) (Session 2025-26)

COURSE TITLE: DATA SCIENCE FOUNDATION COURSE CODE: MCAL-1123

L-T-P: 4-0-0 Theory:70

Examination Time: 3 Hours

Instructions for Paper Setter -

Eight questions of equal marks (14 Marks each) are to set, two in each of the four sections (A-D). Questions of sub-sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be divided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any section.

UNIT-I

Introduction to Python: Basic syntax, Literals, Variables and Identifiers, variables, Operators Data types (Numbers, Booleans, Strings), Control Structures (if, if-else, for loop, while loop, break/continue), Nested conditions, String Operations

UNIT-II

Introduction to Data Structures in Python: List, Tuple, Sets, Dictionary, Operations on Data Structures (Declarations, Iterations, Adding/deleting element, min/max/sorting, merge, select). Functions: Fundamental Concepts, arguments passing, block structure, scope, Program routine, recursion, iteration vs recursion, Lambda function

UNIT-III

Files: Working with Files, File Handling (Read, Write etc.), String Processing, Exception Handling, use of Libraries.

OOPs in Python: Introduction to Object Oriented Programming Classes, Methods, Objects, Functions as objects, multiple inheritance.

Using Databases and SQL: Database Concepts, Using Databases and SQL: Database Concepts, SQLite Manager Firefox Add-on, SQL basic summary, Basic Data modeling, Programming with multiple tables.

UNIT IV

Advance Topics in Python: Working with Numpy, Working with Scipy.

Plotting and Visualization in Python: Plotting using Matplotlib library (Histogram, Box Plot, Scatter Plot, Bar Graphs, Line Graph, etc)

Data Science: Working with Pandas, Working with Scikit-Learn, Basics of Correlation, Regression

Reference/Text Books:

- 1. Charles Dierbach, Introduction to Computer Science Using Python: A Computational Problem-Solving Focus, Wiley Publications,
- 2. Guttag John V, Introduction To Computation And Programming Using Python, PHI, .
- 3. Jeeva Jose and Sojan P. Lal, Introduction to Computational & Problem Solving Through Python, Khanna Publishers,
- 4. Mark J. Guzdial, Introduction to Computing and Programming in Python, arson Education
- 5. Kenneth Lambert, Fundamentals of Python, Course Technology, Cengage Learning,
- 6. Mark Lutz, Learning Python, O'Reilly Media

(Two Year Degree Programme) (CBCEGS) (Session 2025-26)

COURSE TITLE: PROBABILITY AND STATISTICAL TECHNIQUES COURSE CODE: MCAL-1124

L-T-P:4-0-0 Theory:70

Examination Time: 3 Hours

Instructions for Paper Setter -

Eight questions of equal marks (14 Marks each) are to set, two in each of the four sections (A-D). Questions of sub-sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be divided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any section.

Unit-I

Basic Statistics: Measures of central tendency, measures of dispersion, range quartile deviation, mean deviation, standard deviation, coefficient of variation, Skewness and Kurtosis, problems. **Statistical Methods:** Correlation and Regression –Karl Pearson's coefficient of correlation and rank correlation problems, regression analysis-lines of regression, problems. Curve fitting: curve fitting by the method of least square.

Unit-II

Probability: Introduction, sample space and events, Axioms of probability, Addition and multiplication theorems, conditional probability, Baye's Theorem.

Discrete, continuous and mixed random variables, probability mass, probability density and cumulative distribution functions.

Unit-III

Probability Distributions: Random variables (discrete and continuous), Binomial, Poisson and normal distributions- problems (no derivations for mean and standard deviation)

Unit-IV

Sampling theory: Introduction to sampling distributions, standard error, type-I and type-II errors. Test of hypothesis of means, Neyman-Pearson Fundamental Lemma, tests for one sample and two sample problems for normal populations, tests for proportions.

References/Text Books:

- 1. An Introduction to Probability and Statistics by V.K. Rohatgi& A.K. Md.E.Saleh.
- 2. Introduction to Probability and Statistics by J.S. Milton &J.C.Arnold.
- 3. Introduction to Probability Theory and Statistical Inference by H.J. Larson.
- 4. Introduction to Statistical Methods by Guptha, C.B and Vijay Guptha.
- 5. An Outline of Statistical Theory, Vols. I & II by Goon, A.M., Gupta, M.K. and Das Gupta.
- 6. Fundamentals of Mathematical Statistics by Gupta and Kapoor .
- 7. Mathematical Statistics by Kapur, J.N. and Saxena.

(Two Year Degree Programme) (CBCEGS) (Session 2025-26)

COURSE TITLE: INFORMATION SECURITY COURSE CODE: MCAL-1125

L-T-P: 4-0-0 Theory: 70

Examination Time: 3 Hours

Instructions for Paper Setter -

Eight questions of equal marks (14 Marks each) are to set, two in each of the four sections (A-D). Questions of sub-sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be divided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any section.

Unit-I

Overview of Security: Introduction to Information Security, Principles of Information security, Services and attacks, functional requirements of security. Current trends in security, Protection versus security. Aspects of security—confidentiality, authentication, integrity, non-repudiation, availability, Access controls.

Unit-II

Information Security Threats: Virus, Worms, Bots, Adware, Spyware, Ransomware, DoS and DDoS attacks, Trojanhorse, buffer overflow; system threats- intruders; communication threatstapping and piracy.

Authentication-Types of Authentications - Biometric Authentication and Multi factor authentication.

Information Security Solutions – Encryption -Objectives, types- Symmetric Key Encryption, Asymmetric Key encryption. Data Encryption Algorithms -DES, TDES, RSA, ECC.

Unit-III

Integrity-Message Integrity, Message authentication, Hash Functions – MD5, SHA.

Email attacks and Email Security – Threats, Best Practices - PGP, S/MIME, TLS.

Web security Services – Types, Web Application Firewalls, Web filtering, Vulnerability assessment scanners, Fuzzing tools, Black box and white box testing tools.

Unit-IV

Network Security – Firewalls-Introduction, Characteristic, Types: Packet Filter, Stateful and Stateless Packet Filter, Attacks of Packet Filter.

Intrusion detection system - Intruders, Intrusion Detection, Behavior of Authorized user and Intruder, Approaches for Intrusion Detection: Statistical Anomaly Detection and Rule based Detection.

References/Text Books

- 1. William Stallings, Cryptography and Network Security Principles and Practice(7thed.), Pearson Education of India,2017.
- 2. Adam J.Elbirt, Understanding and Applying Cryptography and Data Security CRC Press, Taylor Francis Group, New York,2015.
- 3. Charles P.Pfleeger and SLPfleeger, Jonathan Margulies, Security in Computing (6thedition 2023), Addison-Wesley Professional.
- 4. PeterW. Singer and Allan Friedman, Cybersecurity and Cyberwar: What Everyone Needs to Know, Oxford University Press, 2014.
- 5. NIIT, Introduction To Information Security Risk Management -Paperback January 2003, Prentice Hall of India.
- 6. Hossein Bidgoli, Hand book of information Security, Threats, Vulnerabilities, Prevention, Detection and Management, John Wiley & Sons, 2006.
- 7. Steve G Watkins, An Introduction to Information Security and ISO27001, IT Governance Publishing, 2013.

(Two Year Degree Programme) (CBCEGS)

(Session 2025-26)

COURSE TITLE: PROGRAMMING LAB BASED ON WEB TECHNOLOGEIS COURSE CODE: MCAP-1126

L-T-P: 0-0-2 Practical: 35

Examination Time: 3 Hours

Continuous Assessment: 30% weightage End Semester Examination: 70% weightage

Practical based on:

Web Technologies: HTML: Basic HTML tags, HTML Forms, HTML tables. CSS: Basic CSS styling, Internal CSS, Linking External CSS, CSS box model, JavaScript: Adding dynamic functionality to HTML page, insert, update and delete HTML elements at runtime, JavaScript Objects, Servlets: Creating a Servlet, handling GET and POST requests with Servlets, extracting parameters from GET and POST requests, JDBC: Connecting to a MySQL database, Create, Read, Update and Delete records using JDBC, PHP: Basics of PHP, Exception handling in PHP, handling file uploads in PHP, AJAX and XML: Making asynchronous requests using AJAX, basics of XML

Signature of Head of Depart

(Two Year Degree Programme) (CBCEGS) (Session 2025-26)

COURSE TITLE: PROGRAMMING LAB BASED FOUNDATION OF DATA SCIECNE COURSE CODE: MCAP- 1127

L-T-P: 0-0-2 Practical: 35

Examination Time: 3 Hours

Continuous Assessment: 30% weightage End Semester Examination: 70% weightage

Practical based on:

Develop mini project based on real-world use-cases and implement general problems in Python and programs based on :

String analyzer (count vowels, reverse etc.)

List filtering using conditions

Contact book using dictionaries

Recursive factorial and Fibonacci

Basic calculator with function

Read from a file and process data

Student grade management using classes

Exception-handling

(Two Year Degree Programme) (CBCEGS) (Session 2025-26)

COURSE TITLE: FUNDAMENTALS OF COMPUTERS COURSE CODE: MCAL-1128

L-T-P: 2-0-0 Theory:35

Examination Time: 3 Hrs.

Instructions for Paper Setter -

Eight questions of equal marks (7 Marks each) are to set, two in each of the four sections (A-D). Questions of sub-sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be divided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any section.

Unit-I

Fundamentals of Computer: Introduction to computer, Applications of computer, Components of computers (Input unit, Output Unit, Memory Unit & CPU).

Software: Application Software, Service software, System software, booting a System.

Memories: Primary Memory -RAM (Working and Its types), ROM (Types of ROM). Secondary Memory - Hard Disk (Structure of a hard disk, working, concept of tracks, sectors, clusters, cylinders).

Unit-II

Input Devices: Keyboards, Mouse, Joystick, Light Pen and Data Scanning devices (scanner, OCR, OMR, MICR, Bar Code Reader, Card Reader)

Output Devices: Monitor, Printers (laser printer, dot matrix printer, ink jet printer)

Word Processing: Introduction to Office, word processing & its features, Parts of window of word (Title bar, menu bar, status bar, and ruler), understanding the Ribbon, Use of Office Button and Quick Access Toolbar, Creation of new documents, opening document, insert a document into another document.

Unit-III

Word Processing: Page setup, margins, gutters, font properties, Alignment, page breaks, header & footer, deleting, moving, replace, editing text in document, saving a document, spell checker, printing a document. Creating a table, entering and editing, Text in tables. Changing format of table, height, width of row/column. Editing, deleting Rows, columns in table. Adding picture, page colors and Watermarks, Borders, shading, Templates, wizards, drawing objects.

Presentation: Introduction to PowerPoint, exploring menus, starting a new slide, saving presentation, moving/rearranging slides, printing slides. Applying theme to presentation, Views (slide View, slide sorter, note's view, outline view), Formatting & enhancing text formatting. Displaying slide show, adding multimedia. Slide transitions, applying Animation, Timing slide display, adding movies & sounds.

Unit-IV

Spreadsheet: Introduction to Worksheet/Spreadsheets, creating a simple Worksheet, Computations in a Worksheet, Printing the Worksheet, Graphs, Data Sorting, Filling, Filtering data, Applying Formulas. Inserting and Editing a Function, Auto Calculate and Manual Calculation, Defining Names, Using and Managing Defined Names, Displaying and Tracing Formulas, Understanding Formula Errors

References/Text Books

- 1. Joyce Cox, Joan Lambert and Curtis Frye, Microsoft office Professional 2010 Step by Step, Microsoft Press.
- 2. V. Rajaraman, Neeharika Adabala, Fundamentals of Computers, PHI Learning,
- 3. P.K. Sinha, Computer Fundamentals, BPB Publications.
- 4. Anshuman Sharma, A book of Fundamentals of Information Technology, Lakhanpal Publishers, 5th Edition.

(Two Year Degree Programme) (CBCEGS) (Session 2025-26)

COURSE TITLE: PROGRAMMING IN C COURSE CODE: MCAL-1129

L-T-P: 2-0-0 Theory: 35

Examination Time: 3 Hrs.

Instructions for Paper Setter -

Eight questions of equal marks (7 Marks each) are to set, two in each of the four sections (A-D). Questions of sub-sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be divided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any section.

Unit-I

Fundamentals: Character set, Identifiers and Keywords, Data types, Constants, Variables, Expressions, Statements, Symbolic Constants.

Operations and Expressions: Arithmetic operators, Unary operators, Relational Operators, Logical Operators, Assignment and Conditional Operators, Library functions. Data Input and Output statements

Unit-II

Control Statements: Preliminaries, While, do-while and for statements, Nested loops, ifelse, Switch, Break – Continue statements.

Program Structure Storage Class: Storage Classes- Auto, extern, register and static.

Unit-III

Functions: Brief overview, defining, accessing functions, passing arguments to function, specifying argument data types, function prototypes, recursion.

Arrays: Defining, processing an array, passing arrays to a function, multi-dimensional arrays.

Strings: String declaration, string functions and string manipulation.

Unit-IV

Structures & Unions: Defining and processing a structure, user defined data types, structures and pointers, passing structures to functions, self-referenced structure, and unions.

Pointers: Fundamentals, pointer declaration, passing pointer to a function, pointer and one-dimensional arrays, operation on pointers, pointers & multi-dimensional arrays of pointers, passing functions

References/Textbooks:

- 1. E Balagurusamy, Programming in ANSI C, Tata McGraw-Hill, 2002.
- 2. Byron Gottfried, Schaum's Outline Programming with C, McGraw Hill, 1996.
- 3. Brian W. Kernighan, Dennis M. Ritchie, The C Programming language, Prentice Hall, 1988.
- 4. Stephen G. Kochan, Programming in C, Pearson Education, 2015. Note: The latest editions of the books should be followed.