Mathematics Syllabi for Interdisciplinary programs

by

PG Department of Mathematics

Session: 2023-24

The Heritage Institution

KANYA MAHA VIDYALAYA
 JALANDHAR
 (Autonomous)

Kanya Maha Vidyalaya, Jalandhar (Autonomous)

Scheme and Curriculum of Examinations of Three Year Degree Programme
(Under Credit Based Continuous Evaluation Grading System) (CBCEGS)Bachelor of Arts/ Bachelor of Science (Economics, Non-Medical, Computer Science) Semester-I

Session: 2023-24

Bachelor of Arts/ Bachelor of Science (Economics, Non-Medical, Computer Science) Semester-I												
Programme Name	Course Code		Course Title	Course Type	HoursperweekL-T-P	$\begin{aligned} & \text { Credits } \\ & \text { L-T-P } \end{aligned}$	$\begin{gathered} \text { Total } \\ \text { Credits } \end{gathered}$	Marks			Examinationtime(in Hours)	
			Total					$\begin{aligned} & \hline \text { Ext. } \\ & \hline \mathrm{Th} \mid \mathrm{P} \end{aligned}$	CA			
Bachelor of Arts Bachelor of Science (Economics) Bachelor of Science (Non- Medical) Bachelor of Science (Computer Science)	BARM- 1333 BECM- 1333 BSNM- 1333 BCSM- 1333	(I)		Mathematics (Algebra)	E/C	4-0-0	4-0-0	4	100	80	20	3
Bachelor of Arts Bachelor of Science (Economics) Bachelor of	$\begin{gathered} \text { BARM- } \\ 1333 \\ \text { BECM- } \\ 1333 \\ \\ \text { BSNM- } \\ 1333 \\ \\ \text { BCSM- } \end{gathered}$	(II)	Mathematics (Calculus and Trigonometry)		3-0-0	3-0-0	3	756	60	15	3	

| Science (Non- | 1333 | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Medical) | | | | | | | | | | |
| Bachelor of | | | | | | | | | | |
| Science | | | | | | | | | | |
| (Computer | | | | | | | | | | |
| Science | | | | | | | | | | |

C-Compulsory
E-Elective

After passing this course, the students will be able to:

CO 1: Understand the concept of matrix congruence of skew symmetric matrices and its reduction in real field. Solve system of linear equations.

CO 2: Obtain Eigen values, Eigen vectors, minimal and characteristic equation of a matrix and to apply it in advanced dynamics and electric current.

CO 3: Classify real quadratic form in variables, definite, semi- definite and indefinite real quadratic form.

CO 4: To find the relations between the roots and coefficients of general polynomial equation in one variable, distinguish between solution of cubic equations and Bi -quadratic equations.

Bachelor of Arts/ Bachelor of Science (Economics, Non-Medical, Computer Science)
 Semester-I

Session: 2023-24
Course Title: Mathematics (Algebra)
Course Code: BARM/ BECM/ BCSM/ BSNM-1333(I)
Examination Time: 3 Hrs
Max. Marks: 100
LTP

Instructions for the Paper Setter: Eight questions of equal marks (16 marks each) are to be set, two in each of the four Sections (A-D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.

Unit-I

Linear independence of row and column vectors. Row rank, Column rank of a matrix, Equivalence of column and row ranks, Nullity of matrix, Applications of matrices to a system of linear (both homogeneous and nonhomogeneous) equations. Theorems on consistency of a system of linear equations.
Unit-II

Eigen values, Eigen vectors, minimal and the characteristic equation of a matrix. Cayley Hamilton theorem and its use in finding inverse of a matrix. Quadratic Forms, quadratic form as a product of matrices. The set of quadratic forms over a field.
Unit-III

Congruence of quadratic forms and matrices. Congruent transformations of matrices. Elementary congruent transformations. Congruent reduction of a symmetric matrix. Matrix Congruence of skew-symmetric matrices. Reduction in the real field. Classification of real quadratic forms in variables. Definite, semi-definite and indefinite real quadratic forms. Characteristic properties of definite, semi-definite and indefinite forms.

Unit-IV

Relations between the roots and coefficients of general polynomial equation in one variable. Transformation of equations and symmetric function of roots, Descarte's rule of signs, Newton's Method of divisors, Solution of cubic equations by Cardon method, Solution of biquadratic equations by Descarte's and Ferrari's Methods.

Reference Books:

1. K.B. Datta: Matrix and Linear Algebra, Prentice Hall of India Pvt. Ltd., New Delhi (2003).
2. S. Narayan and P.K. Mittal : Text Book of Matrices, Sultan Chand \& Co. Ltd., New Delhi, $11^{\text {th }}$ edition, 2005.
3.S. Hall and S.R. Knight: Higher Algebra, Arihant Prakashan, Merrut.
3. C.Prasad, Text Book on Algebra and Theory of Equations, Pothishala Pvt. Ltd.

Bachelor of Arts/ Bachelor of Science (Economics, Non-Medical, Computer Science)
 Semester-I
 Session: 2023-24
 Course Title: Mathematics (Calculus and Trigonometry)
 Course Code: BARM/ BECM/ BCSM/ BSNM-1333(II)
 Course Outcomes

After passing this course, the students will be able to:
CO 1: Understand real number system, lub \& glb of set of real numbers, limit of a function, basic properties of limit \& to apply it in real world problem. Analyse continuous and discontinuous function, Apply concept of continuity in uniform continuity.

CO 2: Manage to solve problems related to successive differentiation, Leibnitz theorem, Taylor's \& Maclaurin's theorem with various forms of remainders and to use these expansion to compute values of Sine, Cosine, tangent or log function.

CO 3: Understand the concept of De Moivre's theorem \& its applications. Identify circular, hyperbolic function and their inverses.

CO 4: Demonstrate exponential and logarithmic function of complex numbers, and to solve Gregory's series and summation of series.

CA:15
Instructions for the Paper Setter: Eight questions of equal marks (12 marks each) are to be set, two in each of the four Sections (A-D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.

Unit-I

Real number system and its properties, lub, glb of sets of real numbers, limit of a function, Basic properties of limits, Continuous functions and classification of discontinuities, Uniform continuities.

Unit-II

Differentiation of hyperbolic functions, Successive differentiation, Leibnitz theorem, Taylor's and Maclaurin's theorem with various forms of remainders, Indeterminate forms.

Unit-III

De-Moivre's Theorem and its applications, circular and hyperbolic functions and their inverses.

Unit-IV

Exponential and Logarithmic function of a complex numbers, Expansion of trigonometric functions, Gregory's series, Summation of series.
Text Book:

1. G. B. Thomas and R .L. Finney, Calculus and Analytic Geometry, Pearson, Ninth edition, 2016.

Reference Books:

1. E. Kreyszig, Advanced Engineering Mathematics, John Wiley and Sons, New Delhi, Eighth edition, 2010.
2. N. Piskunov, Differential and Integral Calculus, Peace Publishers, Moscow, 1969.
3. G. Prasad, Differential Calculus, Pothishala Pvt. Ltd., Allahabad, 1950.
4. S. L. Loney, Plane trigonometry part -II, Cambridge university press, 1948.

Kanya Maha Vidyalaya, Jalandhar (Autonomous)

Scheme and Curriculum of Examinations of Three Year Degree Programme (Under Credit Based Continuous Evaluation Grading System) (CBCEGS) Bachelor of Arts/ Bachelor of Science (Economics, Non-Medical, Computer Science) Semester-II

Session: 2023-24

C-Compulsory
E-Elective

Bachelor of Arts/ Bachelor of Science (Economics, Non-Medical, Computer Science)

Semester-II

Session: 2023-24
Course Title: Mathematics (Calculus and Differential Equations)
Course Code: BARM/BECM/ BCSM/BSNM-2333(I)
Course Outcomes

After passing this course, the students will be able to:
CO 1: Demonstrate Asymptotes, points of inflexion, multiple points, concavity and convexity of a curve and apply these concepts in curve tracing.

CO 2: Find arc length of a curve and able to establish reduction formulae for various functions.
CO 3: Understand concept of Exact Differential Equations and demonstrate the geometrical meaning of a differential equation \& orthogonal trajectories.

CO 4: Understand the concept of linear differential equation with constant and variable coefficients and to apply in a wide variety of disciplines like Bio, Eco, Physics and Engineering. Manage to solve the problem related to series solution of differential equations like Bessel and Legendre equation by Power series method.

Semester-II

Session: 2023-24
Course Title: Mathematics (Calculus and Differential Equations)
Course Code: BARM/BECM/ BCSM/BSNM-2333(I)
Examination Time: 3 Hours
Max. Marks: 100
L-T-P
Theory: 80
400
CA:20
Instructions for the Paper Setter: Eight questions of equal marks (16 marks each) are to be set, two in each of the four Sections (A-D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.

Unit-I

Asymptotes, Tests for concavity and convexity, Points of inflexion, Multiple Points, Curvature, Tracing of Curves (Cartesian and Parametric coordinates only).

Unit-II

Integration of hyperbolic functions. Reduction formulae. Definite integrals. Fundamental theorem of integral calculus. Quadrature, rectification.
Unit- III

Exact differential equations. First order and higher degree equations solvable for x,y,p. Clairaut's form and singular solutions. Geometrical meaning of a differential equation. Orthogonal trajectories.

Unit-IV

Linear differential equations with constant and variable coefficients. Variation of Parameters method, reduction method, series solutions of differential equations. Power series method, Bessel and Legendre equations (only series solution).

Text Book:

O.P.Chug, P. Gupta and R.S.Dahiya, Topics in Mathematics: Calculus and Differential Equations, Laxmi Publications Private Ltd.

Reference Books:

1. D.A.Murray, Introductory Course in Differential Equations, Orient Longman Private Limited, Hyderabad, $11^{\text {th }}$ edition, 2003.
2. G.F.Simmons, Differential Equations, McGraw Hill Education, $2^{\text {nd }}$ edition, 2017.
3. G. Prasad: Integral Calculus, Pothishala Pvt. Ltd., Allahabad, 2015.
4. E. Kreyszig: Advanced Engineering Mathematics, John Wiley and Sons, $8^{\text {th }}$ edition, 2010.

Bachelor of Arts/ Bachelor of Science (Economics, Non-Medical, Computer Science)

Semester-II

Session: 2023-24
Course Title: Mathematics (Calculus)

Course Code: BARM/BECM/ BCSM/BSNM-2333(II)

Course Outcomes

After passing this course, the students will be able to:
CO 1: Differentiate between limit and continuity of function of two variables and apply this concept in partial derivatives \& differentiability of real valued function of two variables. Application of inverse \& implicit function theorems.

CO 2: Manage to solve problems related to Maxima, Minima \& Saddle points of functions of two variables. Classify Envelopes \& Evolutes.

CO 3: Understand the concept of Double and Triple integrals.
CO 4: Apply double and triple integral to evaluation of areas, volumes, surfaces of solid of revolution and to find out area and volume of plane and solid figure.

Semester-II

Session: 2023-24
Course Title: Mathematics (Calculus)
Course Code: BARM/BECM/ BCSM/BSNM-2333(II)
Examination Time: 3 Hours
Max. Marks: 75
L-T-P
Theory: 60
300
CA:15
Instructions for the Paper Setter: Eight questions of equal marks (12 marks each) are to be set, two in each of the four Sections (A-D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.

Unit-I

Limit and Continuity of functions of two variables, Partial differentiation, Change of variables, Partial derivatives and differentiability of real-valued functions of two variables, Schwartz's and Young's Theorem, Statements of Inverse and implicit function theorems and applications.

Unit-II

Euler's theorem on homogeneous functions, Taylor's theorem for functions of two variables, Jacobians, Envelopes. Evolutes, Maxima, Minima and saddle points of functions of two variables.

Unit-III

Lagrange's undetermined multiplier method, Double and Triple Integrals, Change of variables, Change of order of integration in double integrals.

Unit-IV

Application to evaluation of area, volume, surface of solids of revolutions.
Text Book:
G.B. Thomas and R.L. Finney, Calculus and Analytic Geometry, 9th Edition, Addison Wesley, 1998

Reference Books:

1. S. Narayan and P.K. Mittal, Integral Calculus, Sultan Chand \& Sons, New Delhi, 1983.
2.E. Kreyszig, Advanced Engineering Mathematics, John Wiley and Sons, New Delhi, eighth edition, 2010
2. S. Narayan and P.K. Mittal, Differential Calculus, Sultan Chand \& Sons, Jalandhar, 1956.

Kanya Maha Vidyalaya, Jalandhar (Autonomous)

Scheme and Curriculum of Examinations of Three Year Degree Programme Bachelor of Arts/ Bachelor of Science (Economics, Non-Medical, Computer Science)
 Semester-III
 Session: 2023-24

C-Compulsory

E-Elective

```
Bachelor of Arts/ Bachelor of Science (Economics, Non-Medical, Computer Science)
                    Semester-III
                                    Session: 2023-24
    Course Title: Mathematics (Analysis)
Course Code: BARM/ BECM/ BCSM/ BSNM-3333(I)
Course Outcomes
```

After passing this course, the students will be able to:
CO 1: Demonstrate an understanding of limits and how they are used in sequences.
CO 2: Understanding how limits are used in series and apply various test on series.
CO 3: To understand the concepts of Riemann sum, partitions, upper and lower sums, Riemann Integrability of continuous functions and of monotone functions. Distinguish between the absolute convergence and conditional convergence.

CO 4: To know and describe the converging behaviour of improper integrals and Beta, Gamma functions. To find the relation between Beta and Gamma functions.

Max Marks :50
Theory : 40
CA:10

Instructions for the Paper Setter: Eight questions of equal marks (8 marks each) are to be set, two in each of the four Sections (A-D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.

Unit-I

Definition of a sequence. Theorems on limits of sequences. Bounded and monotonic sequences. Cauchy's convergence criterion.

Unit-II

Series of non-negative terms. Comparison tests. Cauchy's integral tests. Ratio tests. Cauchy's root test. Raabe's test, logarithmic test. Demorgan's and Bertrand's tests. Kummer's test, Cauchy Condensation test, Gauss test, Alternating series. Leibnitz's test, absolute and conditional convergence

Unit-III
Partitions, Upper and lower sums. Upper and lower integrals, Riemann integrability. Conditions of existence of Riemann integrability of continuous functions and of monotone functions. Algebra of integrable functions.

Unit-IV
Improper integrals and statements of their conditions of existence. Test of the convergence of improper integral, beta and gamma functions.

Text Book:

A. Kumar and S. Kumaresan, A Basic Course in Real Analysis, CRC Press, New York, 2014. Reference Books:
1.S.C Malik and S. Arora, Mathematical Analysis, New Age international Publishers, New Delhi, second edition, 2005.
2.T. M. Apostal, Mathematical Analysis, Pearson education, second edition, 2004.

```
Bachelor of Arts/ Bachelor of Science (Economics, Non-Medical, Computer Science)
                                    Semester-III
                                    Session: 2023-24
    Course Title: Mathematics (Analytical Geometry)
Course Code: BARM/ BECM/ BCSM/ BSNM-3333(II)
    Course Outcomes
```

After passing this course, the students will be able to:
CO 1: Understand the concept of the geometry of lines, shifting of origin and rotation of axis in the Euclidian plane.
CO 2: Develop geometry with a degree of confidence and will gain fluency in the basics of parabola in Euclidian geometry.

CO 3: Demonstrate the concept of ellipse and hyperbola in general quadratic equation.
CO 4: Understand the concept of geometry and real time characteristics of plain and spheres.

Semester-III
Session: 2023-24
Course Title: Mathematics (Analytical Geometry)
Course Code: BARM/ BECM/ BCSM/ BSNM-3333(II)
Examination Time: 3 Hours
Max Marks: 50
Theory :40
CA:10
Instructions for the Paper Setter: Eight questions of equal marks (8 marks each) are to be set, two in each of the four Sections (A-D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.

Unit-I
Transformation of axes, shifting of origin, Rotation of axes in two dimension and three dimension, the invariants, Joint equation of pair of straight lines, equations of bisectors

Unit-II
Parabola and its properties. Tangents and normal, Pole and polar, pair of tangents at a point, Chord of contact, equation of the chord in terms of mid point and diameter of conic.

Unit-III
Ellipse and hyperbola with their properties. Tangents and normal, Pole and polar. pair of tangents at a point, Chord of contact, Identifications of curves represented by second degree equation (including pair of lines).

Unit-IV

Intersection of three planes, condition for three planes to intersect in a point or along a line or to form a prism. Sphere: Section of a sphere by a plane, spheres of a given circle. Intersection of a line and a sphere. Tangent line, tangent plane, power of a point with respect to a sphere, radical planes.

Text Book:

S.L. Loney, The Elements of Coordinate Geometry, Arihant Publications, Sixth edition, 2016. Reference Books:

1. G. Prasad and H.C. Gupta, Text Book on Coordinate Geometry, Pothishala Private Limited, Allahabad, 2000.
2. S. Narayan and P.K. Mittal, Analytical Solid Geometry, S. Chand \& company, Seventeenth edition, 2007.
3. E. Kreyszig, Advanced Engineering Mathematics, Wiley Publisher, Tenth edition, 2010.
4. G.B. Thomos, and R.L. Finney, Calculus and Analytic Geometry, Addison Wesley, Ninth edition, 1995.

Kanya Maha Vidyalaya, Jalandhar (Autonomous)

Scheme and Curriculum of Examinations of Three Year Degree Programme Bachelor of Arts/ Bachelor of Science (Economics, Non-Medical, Computer Science)

Semester-IV

Session: 2023-24

C-Compulsory

E-Elective

```
Bachelor of Arts/ Bachelor of Science (Economics, Non-Medical, Computer Science)
                                    Semester-IV
                                    Session: 2023-24
Course Title: Mathematics (Statics and Vector Calculus)
    Course Code: BARM/BECM/ BCSM/BSNM-4333(I)
Course Outcomes
```

After passing this course, the students will be able:
CO 1: To apply parallelogram law of forces, triangle law of forces, Lami's theorem to real life problems and also understand that how one can resolve number of coplanar forces, parallel forces and concurrent forces acting at a body.

CO 2: To find the applications of CG of a rod, triangular lamina, solid hemisphere, hollow hemisphere, solid cone and hollow cone.

CO 3: To find the values of gradient, divergence and curl operator of given vectors
CO 4: To find the application of Gauss theorem, Green's theorem and Stokes's theorem in real life problems.

Semester-IV
Session: 2023-24
Course Title: Mathematics (Statics and Vector Calculus)
Course Code: BARM/BECM/ BCSM/BSNM-4333(I)
Examination Time: 3 Hours
Max Marks: 50
Theory :40
CA:10
Instructions for the Paper Setter: Eight questions of equal marks (8 marks each) are to be set, two in each of the four Sections (A-D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.

Unit-I

Composition and resolution of forces (parallelogram law, triangle law, polygon law, Lami's Theorem($\lambda-\mu$) theorem). Resultant of a number of coplanar forces, parallel forces. Moments, Varignon's Theorem of moments, Couples , Resultant of two Coplanar Couples, Equilibrium of two coplanar couples, Resultant of a force and a couple, Equilibrium of coplanar forces.

Unit-II

Friction, Laws of friction, Equilibrium of a particle on a rough plane. Centre of Gravity: Centre of gravity of a rod, triangular lamina, solid hemisphere, hollow hemisphere, solid cone and hollow cone.

Unit-III

Vector differentiation, Gradient, divergence and curl operators, line integrals, Vector identity, and Vector integration.

Unit-IV

Theorems of Gauss, Green, Stokes and problems based on these.
Reference Books:

1. N.P. Bali, Statics, Laxmi Publications, Sixth edition, 2007.
2. M.R. Spiegal, Vector Analysis, Schaum's outline Series, McGraw Hill, Second edition, 2017.
3. S.L. Loney, The Elements of Statics and Dynamics, Arihant Publications, Sixth edition, 2016.
4. R.S. Verma, A Text Book on Statics, Pothishala Private Limited, Allahabad, 1962.
```
Bachelor of Arts/ Bachelor of Science (Economics, Non-Medical, Computer Science)
                                    Semester-IV
                                    Session: 2023-24
    Course Title: Mathematics (Solid Geometry)
Course Code: BARM/BECM/ BCSM/BSNM-4333(II)
Course Outcomes
```

After passing this course, the students will be able to:
CO 1: Understand the concept of cylinder, enveloping cylinder and its limiting form.
CO 2: Demonstrate the concept of cone, classification of cone, intersection of line and cone, reciprocal cone.

CO 3: Describe the concept of conicoids or quadratic surface, its classification, trace different types of conicoids and hence find surface of revolution.

CO 4: Describe the concept of tangent and normal plane to the conicoid and Identify the conicoids, representing it in the form of hyperboloid, ellipsoid, paraboloid.

Instructions for the Paper Setter: Eight questions of equal marks (8 marks each) are to be set, two in each of the four Sections (A-D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.

Unit-I

Cylinder as surface generated by a line moving parallel to a fixed line and through fixed curve. Different kinds of cylinders such as right circular, elliptic, hyperbolic and parabolic in standard forms

Unit-II

Cone with a vertex at the origin as the graph of homogeneous equation of second degree in x, y, z. Cone as a surface generated by a line passing through a fixed curve and fixed point outside the plane of the curve. Right circular and elliptic cones.

Unit-III

Equation of surface of revolution obtained by rotating the curve $f(x, y)=0$ about the $z-a x i s$ in the form of $f\left(x^{2}+y^{2}, z\right)$ $=0$.Equation of ellipsoid, hyperboloid and Paraboloid in standard forms.

Unit-IV

Surfaces represented by general equation of 2 nd degree $S=0$. Tangent lines, tangent planes and Normal Plane.

Text Book:

P. K. Jain \& Khalil Ahmed, A text book of Analytical Geometry of three dimensions, New age international limited, Second edition, 2003.

Reference Books:

1. S. Narayan, \& P.K.Mittal, Analytical Solid Geometry, Sultan Chand \& Sons, New Delhi, Sixteenth edition, 2002 (Scope in Chapters-7,8,11).
2. E. Kreyszig, Advance Engineering Mathematics, John Willey \& Sons, tenth edition, 2011.

Scheme and Curriculum of Examinations of Three Year Degree Programme
Bachelor of Arts/ Bachelor of Science (Economics, Non-Medical, Computer Science)
Semester-V
Session: 2023-24

Bachelor of Arts/ Bachelor of Science (Economics, Non-Medical, Computer Science) Semester-V										
Programme Name	Course Code		Course Title	Course Type	Marks				Examination time (in Hours)	
			Total		Ext.		CA			
			L		P					
Bachelor of Arts	$\begin{gathered} \text { BARM- } \\ 5333 \end{gathered}$	(I)		Mathematics (Dynamics)	E/C					
Bachelor of Science (Economics)	$\begin{gathered} \text { BECM- } \\ 5333 \end{gathered}$		50			40	-	10	3	
Bachelor of Science (Non-Medical)	$\begin{gathered} \text { BSNM- } \\ 5333 \end{gathered}$									
Bachelor of Science (Computer Science)	$\begin{gathered} \text { BCSM- } \\ 5333 \end{gathered}$									
Bachelor of Arts	BARM5333									
Bachelor of Science (Economics)	$\begin{gathered} \text { BECM- } \\ 5333 \end{gathered}$	(II)		50		40	-	10	3	
Bachelor of Science (Non-Medical)	$\begin{gathered} \text { BSNM- } \\ 5333 \end{gathered}$		(Number Theory)							
Bachelor of Science (Computer Science)	$\begin{gathered} \text { BCSM- } \\ 5333 \end{gathered}$									

C-Compulsory

E-Elective

After passing this course, the students will be able to:
CO 1: Demonstrate the basic relations between distance, time, velocity and acceleration, manage to solve the problems of Newton's Laws of Motion and the motion of particles connected by a string.

CO 2: Illustrate motion along a smooth inclined plane. Solve different types of problems with Variable Acceleration. Discuss Simple Harmonic Motion .

CO 3: Understand the concept of projectile, oscillating system.
CO 4: Define Work, Power and Energy and explain their relationship. Use measurement tools to apply the concepts of Work and power to solve real life problems. Identify the different types of energy.

Bachelor of Arts /Bachelor of Science (Economics, Non-Medical, Computer Science) Semester-V
 Session: 2023-24
 Course Title: Mathematics (Dynamics)
 Course Code: BARM/ BECM/ BCSM/ BSNM-5333(I)

Examination Time: 3 Hours
Max Marks:50
Theory:40
CA:10
Instructions for the paper setter:
Eight questions of equal marks (8 marks each) are to be set, two in each of the four Sections (A-D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section. The question paper must contain 30% of the article/theory from the syllabus.

Unit-I

Rectilinear motion in a straight line with uniform acceleration, Newton's laws of motion. Motion of two particles connected by a string.

Unit-II

Motion along a smooth inclined plane. Variable acceleration. Simple Harmonic Motion.

Unit-III

Curvilinear motion of particle in a plane, Definition of velocity and acceleration, projectiles, velocity and direction of motion of a projectile after a given time, projectiles on an inclined plane. Oscillations: Free Vibrations, Simple Pendulum, Conical Pendulum.

Unit-IV

Work, Power and Energy: Kinetic and Potential energy, Conservative forces. Theorem of conservation of energy. Work done against gravity.

Text Book:
R. Kumar, Fundamentals of Dynamics, Pardeep Publications, Jalandhar city, second edition, 2004

Reference Books:
1.F. Chorlton, Text Book of Dynamics, CBS Publishers, New Delhi, second edition, 2004 (Scope in chapters 3,8).
2. S.R. Gupta, Elementary Analytical Dynamics, S. Chand and Company, New Delhi, Fourteenth Edition, 1983(Scope in chapters $1,2,3$)

Successful completion of this course will enable the students to:
CO 1: Prove results involving divisibility and greatest common divisors.
CO 2: Find solutions of specified linear Diophantine equation, basic properties of Congruences.
CO 3: Solve system of linear congruences. Apply Fermat's and Wilson's theorem to solve numerical problems.
CO 4: Apply Euler's theorem and apply properties of phi functions in real world problems. Understand application of important arithmetic functions.

Instructions for the Paper Setter:
Eight questions of equal marks (8 marks each) are to be set, two in each of the four Sections (A-D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section. The question paper must contain 30% of the article/theory from the syllabus.

Unit-I

The division algorithm, The greatest common divisor, least common multiple, The Euclidean algorithm.
Unit-II
The Diophantine equation $a x+b y=c$, Prime numbers and their distribution, the fundamental theorem of arithmetic, Basic properties of congruences.

Unit-III

Linear congruences, Special divisibility tests, Chinese remainder theorem, The Fermat's theorem, Wilson's theorem Unit-IV

Euler's Phi function, Euler's theorem, some properties of the Phi Function, σ and τ functions, Mobius Inversion formula, Greatest integer function

Text Book:
D. M. Burton, Elementary Number Theory, Mc Graw-Hill, seventh edition, 2010.

Reference Books,

1.Niven and Zuckerman, An Introduction to the theory of Numbers, John Willey \& Sons, 1991.

Scheme and Curriculum of Examinations of Three Year Degree Programme Bachelor of Arts/ Bachelor of Science (Economics, Non-Medical, Computer Science)

Semester-VI
Session: 2023-24

C-Compulsory

E-Elective

```
Bachelor of Arts/Bachelor of Science (Economics/Computer Science/Non-Medical)
Semester-VI
Session- 2023-24
Course Title: Mathematics (Linear Algebra) Course Code: BARM/BECM/BCSM/BSNM-6333(I)
Course Outcomes
```

After the completion of this course, students should be able to
CO 1: Express the algebraic concepts such as binary operation, groups, rings and fields. Define a vector space and subspace of a vector space and check the linear dependence and linear independence of vectors.

CO 2: Describe the concepts of basis and dimension of vector spaces.
CO 3: Investigate properties of vector spaces and subspaces using linear transformation.
CO 4: Find the matrix representing a linear transformation.

Instructions for the paper setters/examiners:
Eight questions of equal marks (8 marks each) are to be set, two in each of the four Sections (A-D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.

Unit-I

Definition of groups, rings and fields with examples. Definition of a vector space, subspaces with examples. Direct sum of subspaces. Linear span, Linear dependence, Linear independence of vectors. Linear combination of vectors.

Unit-II

Basis of a vector space, Finitely generated vector spaces. Existence theorem for basis. Invariance of the number of elements of the basis set. Dimension of sum of two subspaces. Quotient space and its dimension.

Unit-III

Linear transformation. Algebra of linear transformation. Rank-Nullity theorem, Isomorphism and Isomorphic spaces.

Unit-IV

Matrix of a linear transformation. Changes of basis, Linear operator.
Text Book:
C.W.Curtis, Linear Algebra, Springer, New York, 2017

Reference Books:
1.S. Singh, Linear Algebra, Vikas Publishing, sixth edition, 1983.
2.V. Krishnamurthy, V. P. Mainra and J. L. Arora, An Introduction to Linear Algebra, East West Press, 1976.
3.S. Narayan and P.K. Mittal, A Text Book of Matrices, S. Chand \& Co, tenth edition, 1972.

Bachelor of Arts/Bachelor of Science (Economics/Computer Science/Non-Medical)
Semester-VI
Session: 2023-24
Course Title: Mathematics (Numerical Analysis)
Course Code: BARM/BECM/ BCSM/BSNM-6333(II)

After passing this course, the students will be able to:
CO 1. Know how to find the roots of transcendental and polynomial equations.
CO 2. Perform computation for solving a system of equations.
CO 3. Learn how to interpolate the given set of values.
CO 4. Learn numerical solution of differential equations \& compute numerical integration and differentiation, numerical solution of ordinary differential equations.

Bachelor of Arts/Bachelor of Science (Economics/Computer Science/Non-Medical)

Semester-VI
Session: 2023-24
Course Title: Mathematics (Numerical Analysis)
Course Code: BARM/BECM/ BCSM/BSNM-6333(II)
Examination Time: 3 Hours
Max. Marks:50
Theory:40
CA:10
Instructions for the Paper Setter: Eight questions of equal marks (8 marks each) are to be set, two in each of the four Sections (A-D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.

The students can use only Non Programmable\& Non Storage Type Calculator.

Unit-I

Error generation, propagation, error estimation and error bounds, Solution of non-linear equations, Bisection method, Iteration method, Newton's Method, Generalized Newton's Method, Method of false position, Muller's method, Rate of convergence of these methods.

Unit-II

Solution of linear system of equation; Direct method, Gauss elimination variant (Gauss Jordan and Crout reduction), Triangular Method, Iterative Method, Jacobi's Method, Gauss Seidel Method. Finite Differences: Forward, Backward, Central, Divided differences, shift operator, relationship between the operators and detection of errors by use of difference operator. Interpolation with divided difference, Newton's formula, Lagrangian Method.

Unit-III

Finite difference interpolation, Gauss formula, Stirling formula, Bessel's formula, Error Estimation Extrapolation. Numerical differentiation, Method based on interpolation. Numerical Integration, Trapezoidal rule, Simpson's rule, Weddle rule, Romberg Integration, Gaussian integration method, Gaussian legendre integration. Double numerical integration.

Unit-IV

Numerical solution of ordinary differential equations, Initial value problem, Taylor's method, Euler's methods, Picard's method, Milne's Method, Runge-Kutta Method. Predictor- Corrector's Method.

Text Book:

M K Jain, S R K Iyenger, R K Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Private Limited, Seventh edition, 2019.

Scheme and Curriculum of Examinations of Three Year Degree Programme
Bachelor of Commerce (Honours)
Semester -III
Session- 2023-24

Bachelor of Commerce in Honours							
Course Code	Course Title	Course Type	Marks				Examination time (in Hours)
			Total	Ext.		CA	
				L	P		
BCOL-3331	Analytical Skills	C	100	80	-	20	3

C-Compulsory

After the successful completion of this course students will be able to

CO 1: Understand the concept of sequence and series, Clock problems, Blood Relationship.
CO 2: Demonstrate procedural fluency with real number arithmetic operations and use these operations to represent real world scenarios and to solve stated problems and Demonstrate number sense and conversion between fractions, decimals and percentages.

CO 3: Use simple and compound interest to do business calculations such as value of money, maturity value, present value, future value and able to differentiate which math method should be used for different problems.

CO 4: Analyse data being presented in the form of tables, Venn diagrams, pie charts.

```
Bachelor of Commerce in Honours
                    Semester -III
                    Session: 2023-24
Course Title: Analytical Skills
    Course Code: BCOL-3331
```

Instructions for the Paper Setter:
Eight questions of equal marks are to be set, two in each of the four sections (A-D). Questions of sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one from each section. The fifth question may be attempted from any section. Each question will carry 16 marks.

UNIT-I

Data Analysis:- The data given in a Table, Graph, Bar Diagram, Pie Chart, Venn diagram or a passage is to be analyzed and the questions pertaining to the data are to be answered.

UNIT-II

Sequence and Series:- Analogies of numbers and alphabets completion of blank spaces following the pattern in $\mathrm{A}: \mathrm{b}:: \mathrm{C}$: d relationship odd thing out; Missing number in a sequence or a series.

UNIT-III

Arithmetic ability:- Algebraic operations BODMAS, Fractions, Divisibility rules, LCM\&GCD (HCF).
Date, Time and Arrangement Problems: Calendar Problems, Clock Problems, Blood Relationship.

UNIT-IV

Quantitative aptitude:- Averages, Ratio and proportion, Problems on ages, Time, distance, speed.
Business computations: -Percentages, Profit \&loss, Partnership, simple and compound interest.

Reference Books:

1. R S Agrawal, Quantitative Aptitude for Competitive Examination, S. Chand and company ltd., New Delhi, 2017
2. R V Praveen, Quantitative Aptitude and Reasoning, PHI Learning private limited, Delhi, Seventh Printing (Second edition) October, 2013
3. A. Guha, Quantitative Aptitude for Competitive Examination, Tata McGraw Hill publications, 6th edition.

Scheme and Curriculum of Examinations of Three Year Degree Programme
(Under Credit Based Continuous Evaluation Grading System) (CBCEGS)
Bachelor of Arts/Bachelor of Science (Economics) Semester-I
Session- 2023-24

Bachelor of Arts/Bachelor of Science (Economics) Semester-I										
Course Code	Course Title	Course Type	Hours per week L-T-P	Credits L-T-P	Total Credits	Marks				Examination time (in Hours)
							Th	P		
BARL-1453/BECL-	Quantitative Techniques-I	E	4-0-0	4-0-0	4	100	80	-	20	3

E-Elective

Bachelor of Arts/Bachelor of Science (Economics)

Semester-I
Session: 2023-24
Course title: Quantitative Techniques-I
Course Code: BARL-1453/BECL-1453

Course Outcomes

After the successful completion of this course, the students will be able to

CO 1: Solve linear equations of two variables and its applications in economics under the quadratic equations, arithmetic progression, geometric progression and their applications in economics.

CO 2: Develop understanding of elements of analytical geometry, straight lines, basic concepts of trigonometry and permutations and combinations.

CO 3: Differentiate between a constant and a variable, graph of linear and quadratic functions and its applications in economics.

CO 4: Recognize derivative of implicit functions, parametric functions, exponential functions, logarithmic functions and how to apply these derivatives in economics theory.

Semester-I

Session: 2023-24

Course title: Quantitative Techniques-I
Course Code: BARL-1453/BECL-1453

Examination Time: 3 Hours
Max. Marks: 100
LTP
Theory : 80
4-0-0
CA : 20
Note: Instructions for the Paper-Setters/Examiners:
Eight questions of equal marks (16 marks each) are to be set, two in each of the four Sections (A-D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.

UNIT-I

Solution of Linear Equations: Solution of Simultaneous Linear Equations (upto two variable case), Application of Linear Equation in Economics; Solution of Quadratic Equations Series: Arithmetic Progression Series, Geometric Progression Series and their applications in economics.

UNIT-II
Elements of Analytical Geometry: Straight line; Basic concepts of trigonometry(with formulae); Concepts of combination and permutation, Elements of set theory, union, intersection, difference, symmetric difference, complementation, Venn diagrams.
UNIT-III

Difference between a constant and a variable, concept of functions, classifications of functions, graph of linear and quadratic functions (Economic applications). Limits and continuity of a function. Concept of differentiation.
UNIT-IV

Derivatives of elementary functions excluding inverse trigonometric functions, Rules of derivatives; functions of functions rule; derivatives of implicit functions, parametric functions, logarithmic differentiation (Application in Economics).

Text Book:

C.S. Aggarwal, R.C. Joshi, Mathematics for students of Economics, New Academic Publishing Co., Jalandhar, Thirty first edition, 2016.

Reference Books:

1. G.S. Monga, Mathematics and Statistics for Economics, Sangam Books Ltd, New edition, 1998.
2. T. Yamane, Mathematics for Economists (An Elementary Survey), Literary Licensing, LLC, 2012.
3. R.G.D. Allen, Mathematical Analysis for Economists, Trinity Press, 2014.
4. E.T. Dowling, Introduction to Mathematical Economics, McGraw Hill Publisher, Third edition, 2011.
5. A.C. Chiang, K. Wainwright, Fundamental Methods of Mathematical Economics, McGraw Hill, New York, Fourth edition, 2017.

Kanya Maha Vidyalaya, Jalandhar

Scheme and Curriculum of Examinations of ThreeYear Degree Programme
(Under Credit Based Continuous Evaluation Grading System) (CBCEGS)
Bachelor of Science (Bio-Technology)
Semester-II

Session: 2023-24

C-Compulsory

Bachelor of Science (Bio-Technology)

Semester-II

Session 2023-24

Course Title: Biomathematics and Biostatistics

Course Code: BBTL-2333

Course Outcomes

Upon completion of this course, students should be able to:

CO 1: Calculate summary statistics (mean, median, mode, range, standard deviation and variance) from the data.

CO 2: Familiar with the concepts of probability, conditional probability and Bayes theorem

CO 3: Familiar with the concepts of correlation and regression, Scatter diagram, linear correlation and linear regression lines.

CO 4: State the null hypothesis and alternative hypothesis (both one way and two ways) appropriate to a given scenario and determine if it is appropriate to use the Chi-Square test for testing the significance of fit between data and predicted data.

Bachelor of Science (Bio-Technology)

Semester-II

Session 2023-24

Course Title: Biomathematics and Biostatistics

Course Code: BBTL-2333

Examination Time: 3 Hours

L-T-P
$4-0-0$

Max. Marks: 100

Theory: 80

CA: 20

Instructions for the Paper Setter:
Eight questions of equal marks (16 marks each) are to be set, two in each of the four sections (A-D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any section.

The students can use only Non Programmable \& Non Storage Type Calculator and statistical tables.

Unit-I

Scientific notation, Significant digits, Rounding off, Sampling, Data Collection, Log, Indices. Differentiation and Integration of Standard Functions, results relating to the sum, difference, product and quotient of functions (without proofs), derivative \& integration of trigonometric functions, inverse trigonometric functions, logarithmic functions and exponential functions, logarithmic differentiation \& integration.

Unit-II

Measurement of Central tendency, mean, geometric mean, harmonic mean, Median, Mode, Quartile mean, decile, percentile, Dispersion, Mean Deviation, Standard Deviation, Standard error, Coefficient of variation, Variance, Coefficient of determinant, moments, skewness and kurtosis.

Unit-III

Graphical representation of data, scattered diagram, Straight line, Least square test, Correlation coefficient, Regression Coefficient. Normal Distribution, Poisson distribution, Binomial distribution.

> Unit-IV

Testing of hypothesis, null and alternate hypothesis, level of significance, Student ' t ' test as a test of single mean and difference of mean and ' F ' test as a test of equality of variances, Chi-square test (Goodness of fit \& Association of Attributes), Analysis of variance (one way ANOVA).

Text Book:

P.N. Arora, P.K. Malhan, Biostatistics, Himalaya Publishing House, thoroughly revised edition, 2020. (Unit-II, III, IV)

Reference Books:

1. S.C Gupta, V.K Kapoor, Fundamentals of mathematical statistics, Sultan Chand and Sons, Delhi, Ninth edition, 1997
2. Mathematics Textbook for class XI, NCERT
3. Mathematics Textbook for class XII, NCERT
4. C.R. Kothari, Research Methodology Methods and Techniques, New Age International Publications, New Delhi (2004)
5. Robert R. Sokal and F. James Rohlf, Introduction to Biostatistics, Dover Publications, INC, Mincola, New York, 2nd Edition 2009

KANYA MAHA VIDYALAYA, JALANDHAR (AUTONOMOUS)

SCHEME AND CURRICULUM OF EXAMINATION OF TWO YEAR DEGREE PROGRAMME
(Under Credit Based Continuous Evaluation Grading System) (CBCEGS)

Master of Science (Chemistry)

Session: 2023-24

Semester-II										
Course Code	Course Title	Course Type	Hours Per week L-T-P	Credits L-T-P	Total Credits	Marks				Exami nation time (in Hours)
						Total	Th.	P	CA	
MCHL-2336	Mathematics for Chemists	C	2-0-0	2-0-0	2	50	40	-	10	3

C-Compulsory

Session 2023-24

Course Title: Mathematics for Chemists

Course Code-MCHL-2336

Course Outcomes

After the successful completion of this subject, the students should be able to:

CO 1: Understand the trigonometric functions with the help of unit circle and application of trigonometric identities and able to solve determinants with the help of its various properties.

CO 2: Demonstrate the concept of matrices and type of matrices and how to calculate transpose, adjoint and inverse of matrices. Manage to solve problems related to addition, subtraction and multiplication. To understand the concept and solve system of linear equations.

CO 3: Solve Complex problems related to derivative of sum, difference, product and quotient of functions and also to find derivative of trigonometric functions, inverse trigonometric functions, logarithmic functions and exponential functions.

CO 4: Recognize integration as an inverse of differentiation and to calculate area under curve and understand integrals as limit of sum and its geometrical interpretation.

Master of Science (Chemistry) Semester-II

Session 2023-24

Course Title: Mathematics for Chemists

Course Code-MCHL-2336

Examination Time: 3 Hours
Max. Marks:
50

LT P
Theory: 40

200
CA: 10

Instructions for the Paper Setters:
Eight questions of equal marks are to be set, two in each of the four Sections (A-D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.

Unit-I

Trigonometry and Determinants:

Definition of $\sin , \cos , \tan , \cot , \sec , \operatorname{cosec}$ functions with the help of unit circle, values of $\sin \mathrm{x}, \cos \mathrm{x}$ for $\mathrm{x}=0, \pi / 6, \pi$ $/ 3, \pi / 2$. Trigonometric identities (without proofs) and their applications. Definition and expansion properties of determinants, product of two determinants of 3 rd order.

Unit-II

Matrices:

Introduction to various forms of Matrices, row, column, diagonal unit, Sub matrix, square, equal matrices, null, symmetric and skew symmetric matrices, transpose of a matrix, adjoint and inverse of matrices. Addition, multiplication, characteristic equation of a matrix, statement of Cayley Hamilton theorem. Rank of matrix, condition of consistency of a system of linear equations. Eigen vectors and Eigen values of matrices.

Unit-III

Differential Calculus

Differentiation of standard functions, theorems relating to the sum, difference, product and quotient of functions (without proofs), derivative of trigonometric functions, inverse trigonometric functions, logarithmic functions and exponential functions, differentiation of implicit functions, logarithmic differentiation

Unit-IV

Integral Calculus

Integration as an inverse of differentiation, area under a curve, indefinite integrals of standard forms, method of substitution, method of partial fractions, integration by parts, definite integrals, definite integrals as limit of a summand geometrical interpretation.

Reference Books:

1. Mathematics Textbook for class XI, NCERT

2 Mathematics Textbook for class XII, NCERT
3. J. B. Dence, Mathematical Techniques in Chemistry, John Wiley \& Sons, First edition, 1975.

KANYA MAHA VIDYALAYA, JALANDHAR (AUTONOMOUS)

SCHEME AND CURRICULUM OF EXAMINATION OF TWO YEAR DEGREE PROGRAMME
(Under Credit Based Continuous Evaluation Grading System) (CBCEGS)

Master of Science (Zoology)

Session: 2023-24

Semester-II										
Course Code	Course Title	Course Type	Hours Per week L-T-P	Credits L-T-P	Total Credits	Marks				Exami nation time (in Hours)
						Total	Th.		CA	
								P		
MZOL-2334	Biostatistics		4-0-0		4	100	80	-	20	3
		C		4-0-0						

C-Compulsory

Master of Science (Zoology)

Semester-II
Session: 2023-24

Course Title: Biostatistics

Course Code: MZOL-2334
Course Outcomes
After the Successful Completion of the subject students will be able to

CO 1: Know how to collect, analyze and interpret data and use this data to find out different measures of central tendency, dispersion, skewness, kurtosis and moments. They able to define event, outcome, trial, simple event, sample space and calculate the probability of events for more complex outcomes related to conditional, additive and multiplicative law of probability.

CO 2: Able to use and stimulate random variable, distribution function, probability mass function and probability density function using calculus to answer the quantitative questions about the outcome of probabilistic systems. And also understand the concept of mathematical expectation and use it to find out the mean, variance, standard deviation, kurtosis etc. of different probability distributions like Binomial, Poisson and Normal etc.

CO 3: Use Correlation to identify the strength and direction of a linear relationship between two variables and using Regression to predict how much a dependent variable changes based on adjustments to an independent variable and also apply Karl Pearson Correlation coefficient and Spearman's Rank Correlation and Least Square technique for Regression lines.

CO 4: Understand how to develop Null and Alternative Hypothesis and examine the process of Hypothesis testing with reference to one or two tailed test at a given level of significance. Also manage to solve problems using t, Z and ChiSquare test and will be able to describe the use of ANOVA for one way and two way classified data with one observation per cell.

Session: 2023-24

Course Title: Biostatistics
Course Code: MZOL-2334

Examination Time: 3 Hrs
Max. Marks: 100

LTP
Theory: 80
400
CA: 20

Instructions for the Paper Setter:
Eight questions of equal marks (16 marks each) are to be set, two in each of the four Sections (A-D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section.

The students can use only Non Programmable \& Non Storage Type Calculator and statistical tables.
UNIT-I
Statistical Method: Collection of data. Frequency distribution and its graphical representation. Measures of central tendency, dispersion, moments, skewness and kurtosis .

Probability: Random experiments, sample space, events. Mathematical definition of probability of an event. Use of permutations and combinations in calculations of probability, Conditional probability, Additive and multiplication law of probability

UNIT-II
Random variables and its pmf, pdf, cdf, mathematical expectation and variances, Distribution of binomial, Poisson and normal variables and (without derivation)

UNIT-III

Correlation and Regression: Relationship between variables, covariance, Karl-Pearson's correlation coefficient, Spearman's rank correlation coefficient, interpretation of correlation coefficients, Least square technique for regression lines (without proof), regression coefficients, relationship between correlation analysis and regression analysis.

UNIT-IV

Hypothesis Testing: Sample statistics and parameters, population null hypothesis, level of significance. Definitions of Chi-square test, , Application of X2-test as a goodness of fit and association of attributes, t-test as a test of single and difference of means and F-test as a test of equality of population variances in testing of hypothesis.
Analysis of Variance: Analysis of variance for one-way classified data.

Text Book:

P.N. Arora, P.K. Malhan, Biostatistics, Himalaya Publishing House, Mumbai, Reprint 2013.

Reference Books

1. S.C. Gupta, V.K. Kapoor, Fundamental of Mathematical Statistics, Sultan Chand \& Sons, Twelth Edition, 2020
2. E. Batschelet, Introduction to Mathematics for Life Scientists, Springer Publisher, Third Edition, 1979

KANYA MAHA VIDYALAYA, JALANDHAR (AUTONOMOUS)

SCHEME AND CURRICULUM OF EXAMINATION OF TWO YEAR DEGREE PROGRAMME
(Under Credit Based Continuous Evaluation Grading System) (CBCEGS)

Master of Arts (Economics)
Session: 2023-24

Semester-I										
							Ma			
Course Code	Course Title	Course Type	Hours Per week L-T-P	Credits L-T-P	Total Credits	Total	Th.	P	CA	Examin ation time (in Hours)
MECL-1453	Quantitative Methods for Economists-I	C	4-0-0	4-0-0	4	100	80	-	20	3

C-Compulsory

Session: 2023-24

Course Title: Quantitative Methods for Economists-I

Course Code: MECL-1453

Course Outcomes

After the completion of this course, students should be able to

CO 1: Recognize the concept of functions and rules of differentiation and apply this to find out revenue, cost, demand, supply function, elasticity and their types.

CO 2: Manage to solve the problem related to maxima and minima in single and Multivariable functions for application in market equilibrium. Learn concepts of integration and its applications to consumer's surplus and producer's surplus.

CO 3: Determine the solution of simultaneous equation using crammer's rule and understand the concept of quadratic forms, Eigen roots and Eigen vectors. CO 4: Recognize linear programming problem and its formulation and solution through graphical and simplex methods. Well understanding the concept of duality, concept of a game, saddle point solution and its simple applications in economics.

Master of Arts (Economics)

Semester-I

Session: 2023-24

Course Title: Quantitative Methods for Economists-।

 Course Code:MECL-1453Examination Time: 3 Hrs
LTP
400

Max.Marks: 100
Theory: 80
CA:20

Instructions for the Paper-Setters/Examiners:
Eight questions of equal marks(16 marks each) are to be set, two in each of the four Sections (A-D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any section. The students can use only Non Programmable\& Non Storage Type Calculator.
Unit-I

Concept of function and types of functions; Rules of differentiation; Application to revenue, cost, demand, supply functions; Elasticities and their types; production function; Rules of partial differential and interpretation of partial derivatives; homogeneous functions and Euler's theorem.

> Unit-II

Problem of maxima and minima in single and multivariable (upto 3) functions; Unconstrained and constrained optimization in simple economic problems; Simple applications in market equilibrium; Concept of integration; Simple rules of integration; Application to consumer's surplus and producer's surplus.
Unit- III

Determinants and their basic properties; Solution of simultaneous equations through Cramer's rule, Concept of matrix-their types, simple operations on matrices, matrix inversion and rank of a matrix; Concept of quadratic form, Eigen roots and Eigen vectors; Introduction to input-output analysis
Unit-IV

Linear Programming -Formulation and solution through graphical and simplex method. Statement of basic theorems of linear programming; Formulation of the dual of primal and its interpretation; Shadow prices and their uses; Concept of duality; Concept of a game; Strategies - simple and mixed; Value of a game; Saddle point solution; Simple applications.

Text Book:
S.C. Aggarwal, R.K. Rana, L. Gupta, Mathematics for Economists (Quantitative Methods for Economists), VK Global Publications, Haryana, 2022.

1. A.C. Chiang, K. Wainwright, Fundamental Methods of Mathematical Economics, McGraw Hill, New York, Fourth Edition.
2. R.G.D. Allen, Mathematical Analysis for Economics, A.I.T.B.S. Publisher, Delhi, 2006.
3. C.R. Kothari, An Introduction to Operational Research, Vikas Publishing House, New Delhi, Third Edition, Reprint 2010.

KANYA MAHA VIDYALAYA, JALANDHAR (AUTONOMOUS)

SCHEME AND CURRICULUM OF EXAMINATION OF TWO YEAR DEGREE PROGRAMME
(Under Credit Based Continuous Evaluation Grading System) (CBCEGS)
Master of Science (Botany)
Session: 2023-24

Semester-II										
Course Code	Course Title	Course Type	Hours Per week L-T-P	Credits L-T-P	Total Credits	Total	Th.	P	CA	Exami nation time (in Hours)
MBTL-2336	Theoretical Biology	C	3-0-0	3-0-0	3	75	60	-	15	3
MBTP-2078	Botany Practical II	C	0-0-6	0-0-3	3	75	-	60	15	6

C: Compulsory

Master of Science (Botany) Semester-II

Course Title: Theoretical Biology

Course Code: MBTL-2336

Course outcomes

After the successful completion of this subject, the students should be able to:
CO 1: Recognize linear function, power function, periodic function, exponential function and trigonometric relation and apply differentiation and integration in real life Scenario .

CO 2: Calculate differentiation and integration of some important functions by using different rules.
CO 3: Understand the concept of random experiment and laws of probability.
CO 4: Use Correlation and Regression to identify the strength and direction of a linear relationship between the variables in real life scenario and manage to solve problems using t test, Chi- Square test and Z-test.

Master of Science (Botany) Semester-II

Course Title: Theoretical Biology
Course Code: MBTL-2336

Examination time: 3 Hrs.

Max. Marks- 75

LT P
Theory-60

300
CA - 15

Instructions for the Paper Setters:

Eight questions of equal marks (12 marks each) are to be set, two in each of the four Sections (A-D). Questions of Sections A-D should be set from Units I-IV of the syllabus respectively. Questions may be subdivided into parts (not exceeding four). Candidates are required to attempt five questions, selecting at least one question from each section. The fifth question may be attempted from any Section. The question paper must contain 30% of the article/theory from the syllabus.

The students can use only Non-Programmable \& Non-Storage Type Calculator and statistical tables.

UNIT-I

1. Linear Function: $y=a x$ and $y=a x+b$
2.Power Function: $y=a x^{n}$.
3.Sine and cosine, trigonometric relations.
2. Exponential and Logarithmic Functions: Exponential function $y=a q^{x}$, logarithmic function.

UNIT-II

5. Differentiation and Integration: differentiation of some important functions (Linear function, Power function, Logarithmic, Exponential, Trigonometric functions), product rule and quotient rule of differentiation, chain rule of differentiation.
6.Integration: Rules of integration (Linear function, Power function, Logarithmic, Exponential, Trigonometric Functions), integration by substitution, integration of product of two functions.

UNIT-III

7.Probability: Random experiment, sample space events, mathematical definition of probability, addition and multiplication law of probability.

UNIT-IV

8.Statistics: Mean, standard deviation, Normal Distribution, Simple linear regression and correlation.
9.Hypothesis testing: Sample Statistics and parameters, standard error, Z-test, t-test as a test of single mean, chi square test as a goodness of fit and association of attributes (For uniformity, ratio and proportion)

Reference Books:

1. O.P Arora, V.K Bhandari, Mathematics, S.Dinesh and Co., Jalandhar city, Second edition, 2000 (Scope in Chapter-6)
2. O.P Arora, V.K Bhandair, Mathematics, S.Dinesh and Co., Jalandhar city, ninth edition, 2004 (Scope in Chapters-3,5,7,8)
3. P.N Arora, P.K Malhan, Biostatistics, Himalaya Publishing House, New Delhi, Second edition, 2013 (Scope in Chapters-5,6,8,9,10,11,12,13,14).

Master of Science (Botany) Semester-II
 Session: 2023-24
 Botany Practical II
 MBTP-2078
 (Based on MBTL-2074, MBTL-2075 and MBTL-2336)

Course Outcomes:

After passing this course the student will be able to:
CO1: Understand structures of various cell organelles.
CO2: Examine cell divisions in plant cells.
CO3: Perform different experiments based on plant ecology.

CO 4 : Analyze nutrients and pigment contents in plants using various techniques.
CO5: Learn application of Statistics in Life Science.
CO6: Analyze and interpret the observations Statistically

Master of Science (Botany) Semester-II
 Session: 2023-24
 Botany Practicals II
 MBTP-2078

(Based on MBTL-2074, MBTL-2075 and MBTL-2336)

Examination time: 6 Hrs.

LT P

003

Max. Marks- 75

Theory - 60

CA - 15

Instructions for the paper setter: Question paper is to be set on the spot jointly by the Internal and External Examiners. Two copies of the same may be submitted for the record to COE Office, Kanya Maha Vidyalaya, Jalandhar.

Suggested Practicals

Based on MBTL-2074:

1. Understanding the cytology laboratory- components of compound/electron microscope.
2. Examination of electron micrographs of eukaryotic cells with special reference to organelles.
3. Examination of various stages of mitosis and meiosis using appropriate plants material (e.g. onion root tips, onion flower buds).
4. Calculation of Mitotic and meiotic index from dividing root tip cells and pollen grains.
5. Study on cyclosis in Tradescantia and Hydrilla leaves.
6. Observations on Barr bodies in Squamous epithelium.
7. Preparation of Feulgen stained chromosomes in root tip cells.
8. Effect of colchicine on chromosome movements during mitosis.
9. Use of fluorescent dye to visualize cell components.

Based on MBTL-2075:

1. To determine minimum size and number of quadrats required for reliable estimate of biomass in grassland.
2. To find out association between grassland species using chi square test.
3. To analyse plant communities using Bray-Curtis ordination method.
4. To determine soil moisture content, porosity, bulk density of different soil samples collected from different locations.
5. To study chlorophyll content of SO_{2} fumigated and unfumigated plant leaves.
6. To determine Na, K concentration of water sample using flame photometer.
7. To determine water holding capacity of different soil samples.
8. To determine percent organic Carbon and organic matter in different soil samples.
9. To estimate chlorophyll content in SO_{2} fumigated and unfumigated plant leaves.
10. To estimate rate of CO_{2} evolution from different soil using soda lime or alkali absorption method.
11. To determine sulphate content of water samples.
12. To determine O_{2} content of water samples.

Based on MBTL-2336:

1. To Study the Exponential Growth of Microbes with the help of Graph.
2. To Find the rate of change of Bacterial Growth w.r.t time, nutrient etc.
3. To Study the Application of Probability in Life Sciences / Genetics.
4. To Analyse the Biostatistical data using mean and Standard deviation.
5. To Find Correlation and Regression between two Variables of Biostatistical data.
6. Application of t-test as a Single mean in Life Sciences.
7. Application of χ^{2}-test as a Goodness of fit in Life Sciences.
8. Application of χ^{2} - test in association of attributes in Life Sciences.
9. Application of Z- test as test of single Mean in Life Sciences in Botany.
